hw7 - Week 7 0 4.1 2nd Order Linear Equations 1 4.2...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Week 7: 0. 4.1 2nd Order Linear Equations 1. 4.2 Constant Coef, Homogeneous DE 2. 4.3 Undetermined Coef 3. 4.5 Springs (Homog case) 2 General Solution: (1) to solve the 2nd order linear DE y + a 1 y + a 2 y = 0 find two linearly independent solutions y 1 and y 2 , then the general solution is y H = c 1 y 1 + c 2 y 2 . (2) to solve the non-homogeneous 2nd order linear DE y + a 1 y + a 2 y = F, find a particular solution y p , then the general solution is y = y H + y p , where y H is the solution of (1). Problem 1: Determine all values r so y = e rx is a solution to y- 4 y + 3 y = 0 . Find the general solution. Solution: For y = e rx , we have y = re rx and y = r 2 e rx . Substitution in the DE gives 0 = y- 4 y + 3 y = r 2 e rx- 4 re rx + 3 e rx = ( r 2- 4 r + 3) e rx . Now r 2- 4 r + 3 = ( r- 3)( r- 1) = 0 has roots r 1 = 1 and r 2 = 3 , so we get solutions y 1 = e x and y 2 = e 3 x , so the general solution is y = c 1 e x + c 2 e 3 x . 4 Thursday: Constant Coef, Homogeneous DE When the DE y + a 1 y + a 2 y = 0 has coefficients a 1 and a 2 that are constant, the two linearly independent solutions y 1 and y 2 in the general solution y H = c 1 y 1 + c 2 y 2 may be determined using the roots of the characteristic polynomial P ( r ) = r 2 + a 1 r + a 2 . Three cases: (1) For distinct real roots r 1 and r 2 , y = c 1 e r 1 x + c 2 e r 2 x . (2) For a repeated real root r 1 the 2nd independent solution is y 2 = xe r 1 x , and y = c 1 e r 1 x + c 2 xe r 1 x . (3) For a pair of complex roots r = a + bi and r = a- bi with a and b real, b > 0, y = c 1 e ax cos( bx ) + c 2 e ax sin( bx ) . 6 Tues: Recitation on 4.2. Problem 2: Solve y- 6 y + 34 y = 0 . Solution: The characteristic polynomial is r 2- 6 r + 34 , so the quadratic formula gives roots 6 ± √ 6 2- 4 · 34 2 = 3 ± 5 i. (why? ) So y = e 3 x ( c 1 cos 5 x + c 2 sin 5 x ) is the general solution. *Postscript: We may solve the IVP y + 4 y + 4 y = 0 , y (0) = 1 , y (0) = 4 ....
View Full Document

This note was uploaded on 02/29/2008 for the course MATH 205 taught by Professor Zhang during the Spring '08 term at Lehigh University .

Page1 / 20

hw7 - Week 7 0 4.1 2nd Order Linear Equations 1 4.2...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online