This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: tim89 – Homework 10 – Cepparo – (58400) 1 This printout should have 23 questions. Multiplechoice questions may continue on the next column or page – find all choices before answering. 001 10.0 points Compute the value of lim n →∞ 4 a n b n 3 a n 5 b n when lim n →∞ a n = 6 , lim n →∞ b n = 2 . 1. limit = 12 7 2. limit = 25 14 3. limit = 25 14 4. limit = 12 7 5. limit doesn’t exist 002 10.0 points If lim n →∞ a n = 5 , determine the value, if any, of lim n →∞ a n 8 . 1. limit = 3 2. limit = 5 3. limit = 5 8 4. limit = 13 5. limit doesn’t exist 003 10.0 points Find a formula for the general term a n of the sequence { a n } ∞ n =1 = braceleftBig 1 , 4 5 , 16 25 , 64 125 , . . . bracerightBig , assuming that the pattern of the first few terms continues. 1. a n = parenleftBig 4 5 parenrightBig n 1 2. a n = parenleftBig 5 4 parenrightBig n 3. a n = parenleftBig 4 5 parenrightBig n 4. a n = parenleftBig 5 6 parenrightBig n 1 5. a n = parenleftBig 5 4 parenrightBig n 1 6. a n = parenleftBig 5 6 parenrightBig n 004 10.0 points Determine if the sequence { a n } converges, and if it does, find its limit when a n = 6 n 5 5 n 3 + 4 5 n 4 + n 2 + 4 . 1. limit = 1 2. the sequence diverges 3. limit = 0 4. limit = 6 5 5. limit = 5 005 10.0 points tim89 – Homework 10 – Cepparo – (58400) 2 Determine whether the sequence { a n } con verges or diverges when a n = 7 n 2 7 n + 1 n 2 + 4 n + 1 , and if it does, find its limit 1. the sequence diverges 2. limit = 3 7 3. limit =...
View
Full Document
 Spring '08
 Cepparo
 Calculus, Limit, Limit of a sequence

Click to edit the document details