Exam 1 - Garcia, Ilse Exam 1 Due: Oct 2 2007, 11:00 pm...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Garcia, Ilse Exam 1 Due: Oct 2 2007, 11:00 pm Inst: Fonken 1 This print-out should have 20 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. The due time is Central time. 001 (part 1 of 1) 10 points Find the value of lim x x 16 + 3 x- 4 . 1. limit = 2. limit = 3 8 3. limit = 4 3 4. limit = 8 3 correct 5. limit = 0 6. limit = 3 4 Explanation: After rationalization, 16 + 3 x- 4 = (16 + 3 x )- 16 16 + 3 x + 4 . Thus f ( x ) = x 16 + 3 x- 4 = x ( 16 + 3 x + 4 ) 3 x , from which it follows that f ( x ) = 16 + 3 x + 4 3 for x 6 = 0. Now lim x 16 + 3 x = 4 . Consequently, by properties of limits, lim x f ( x ) = 8 3 . keywords: limit, evaluate limit analytically, rationalize denominator, 002 (part 1 of 1) 10 points Determine the value of lim x 1 f ( x ) when f satisfies the inequalities 5 x f ( x ) 1 3 x 3 + 4 x + 2 3 on [0 , 1) (1 , 2]. 1. limit does not exist 2. limit = 4 3. limit = 5 correct 4. limit = 3 5. limit = 2 6. limit = 6 Explanation: Set g ( x ) = 5 x, h ( x ) = 1 3 x 3 + 4 x + 2 3 . Then, by properties of limits, lim x 1 g ( x ) = lim x 1 5 x = 5 , while lim x 1 h ( x ) = lim x 1 1 3 x 3 + 4 x + 2 3 = 1 3 + 4 + 2 3 = 5 . By the Squeeze Theorem, therefore, lim x 1 f ( x ) = 5 . Garcia, Ilse Exam 1 Due: Oct 2 2007, 11:00 pm Inst: Fonken 2 To see why the Squeeze theorem applies, its a good idea to draw the graphs of g and h using, say, a graphing calculator. They look like g : h : (1 , 5) (not drawn to scale), so the graphs of g and h touch at the point (1 , 5) while the graph of f is sandwiched between these two graphs. Thus again we see that lim x 1 f ( x ) = 5 . keywords: limit, squeeze theorem 003 (part 1 of 1) 10 points Let f be the function defined by f ( x ) = x + ( x- 2 + | x- 2 | ) 2 . Determine if lim h f (3 + h )- f (3) h exists, and if it does, find its value. 1. limit doesnt exist 2. limit = 6 3. limit = 10 4. limit = 8 5. limit = 9 correct 6. limit = 7 Explanation: Since | v | = v, v 0,- v, v < 0, we see that x- 2 + | x- 2 | = 2( x- 2) , x 2, , x < 2. Thus f ( x ) = 1 x, x < 2, 1 x + 4( x- 2) 2 , x 2. In particular, therefore, lim h f (3 + h )- f (3) h = d dx 1 x + 4( x- 2) 2 fl fl fl x = 3 = 1 + 8( x- 2) fl fl fl x = 3 because 3 , 3 + h > 2 for all small h . Conse- quently, limit = 9 . keywords: limit, Newtonian quotient absolute value function 004 (part 1 of 1) 10 points Determine if the limit lim x sin 2 x 6 x exists, and if it does, find its value. 1. limit = 3 2. limit = 2 3. limit = 6 Garcia, Ilse Exam 1 Due: Oct 2 2007, 11:00 pm Inst: Fonken 3 4. limit = 1 3 correct 5. limit doesnt exist Explanation: Using the known limit: lim x sin ax x = a , we see that lim x sin 2 x 6 x = 1 3 ....
View Full Document

Page1 / 12

Exam 1 - Garcia, Ilse Exam 1 Due: Oct 2 2007, 11:00 pm...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online