This preview shows page 1. Sign up to view the full content.
Unformatted text preview: 5. Find the Laurent Series expansion for f z ( ) = 1 z z 1 ( ) 2 about the point z= 1. Give the region of convergence. HINTS: Try expanding 1 z about z= 1 first. You need not compute any integrals to solve this problem. 6. For the expressions in each of parts b and c of Poularikas and Seely, problem 9 (p. 983): (i) Find all poles. (ii) Find the residue of the pole nearest the origin. (iii) Find all essential singularities. Justify your answers. NOTE: Dont forget to include the point at z = ....
View Full
Document
 Fall '08
 staff

Click to edit the document details