{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Notes3_Det_

# Notes3_Det_ - DETERMINANTS NOTE A will denote a square...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: DETERMINANTS NOTE: A will denote a square matrix [am] of size nxn. 1. DEFINITION: The (i,j) complement in A is a submatrix of A, denoted by A(i,j), which is obtained by deleting row i and column j from A. 2. DEFINITION: The determinant of A, denoted by det(A), is a scalar which is defined inductively as follows: 1. If n = l, det(A) = a11 If n = 2, det(A) = a a — a a 11 22 12 21 3. If n > 2, do the following: _ Define the (i,j) minor of A by Mij = det A(i,j) -Define the (i,j) cofactor of A by AH = (—l)i+j-Mij Then det(A) = a A + a A + a A + ... + a A 11 11 12. 12 13 13 1n in Note: The cofactor matrix is defined by cof(A) = [Aiﬂ The adjoint matrix is adj(A) = cof(A)T EXAMPLE: A = 1 0 2 det(A) = 1.(_3) + 006 + 2-(—3) = -9 —l l 3 2 l 0 3. BIG THEOREM: a) For any row i : det(A) = a_A_ + a_A + a A + ... + a_A. 11 1 12 12 i3 13 1n 1n b) For any col 3 : det (A) = alelj + asz21+ a3jA3j+ . .. + anjAnj EXAMPLE: A = l O 2 COf (A) = —3 6 -3 -l l 3 2 —4 —l 2 l O -2 —5 1 row 1: det(A) = (l)(-3)+(O)(6)+(2)(-3) = -9 row 3: det(A) = (2)(—2)+(1)(-5)+(0)(1) = -9 col 2: det(A) = (O)(6)+(l)(-4)+(l)(-5) = -9 COFACTORS: A = 1 o 2 cof(A) = ’3 6 -3 adj(A) = —3 2 —2 —1 1 3 2 —4 -1 6 -4 -5 2 1 o —2 —5 1 -3 -1 1 A adj(A) = -9 o 0 A (—l/9)adj(A) = 1 0 0 o -9 0 o 1 0 o o -9 o 0 1 4. COROLLARY: l. A-adj(A) = det(A)-I n 2. If A is invertible, then A”'= (l/det(A))~adj(A). 5. DEFINITION: 1) A is lower triangular if all superdiagonal entries. are zero. 2) A is upper triangular if all subdiagonal entries are zero. 6. THEOREM: If A is (upper or lower) triangular, then det (A) = a11a22 nn 7. BIG THEOREM: det(AB) = det(A)det(B) 8. LEMMA: 1. If E = ri(i,j,I) , then det(E) = —l 2. If E = rm(r,i,I) , then det(E) = r 3. If E = ra(r,i,j,I) , then det(E) = l 9. THEOREM: 1. det(ri(i,j,A)) = —det(A) 2. det(rm(r,i,A)) = r°det(A) 3. det(ra(r,i,j,A) = det(A) 10. If A is tranformed to upper triangular form, Au, by t row operations, then A = E ...E E.A ‘x t 2 1 and det(Au) = det(Et)...det(E2)det(E1)det(A) 11. BIG THEOREM: Let A be an nxn matrix. The following is the procedure for the most efficient computation of det(A): 1) Reduce A to an upper triangular form, Au, using row operations. 2) Keep track of the operations, E1, and use the result above: If det(Et)...det(E2)det(E1) = then det(A) = (l/m)-det(Au) m, 12. EXAMPLE (Avoiding row interchange and row multiply) A=2—462 —>2—231——>2—231 —>2—231=A 5—963 01—9—2 01—9-2 01—9—2 t —12-6—2 00-3—1 00—3—1 00-3—1 2861 012 0-1 0010823 000—13 det(A) = (2)(1)(—3)(~13) =78 12. EXAMPLE: A: 1012 (1/4)(-2/11) 10 1 2 =A 3412‘_———“’ 01—1/2-1 “ 5100 00 1 2 0121 00 0—3 There are 7 row operations required to do the above reduction, but all have determinant = 1 (row adds) except the third (multiply row 2 by 1/4) and the sixth (multiply row 3 by -2/ll). Thus we need keep track of only the two row multiplies. det(Au) = det(E3) det(Eé) det(A). l-l-l-(—3) = (l/4)(—2/ll)-det(A) det(A) = (-3)(-22) = 66 ...
View Full Document

{[ snackBarMessage ]}