midsol08w

midsol08w - PHYS 115A Midterm Solutions Winter 2008 Problem...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
PHYS 115A Midterm Solutions Winter 2008 Problem 1 Recall that the normalized energy eigenstates and energies for an infinite well of width a extending from x = - a/ 2 to x = + a/ 2 are: E n = n 2 ± π 2 ~ 2 2 ma 2 ψ n ( x ) = r 2 a cos nπx a · for odd n = 1 , 3 , 5 , 7 ,... ψ n ( x ) = r 2 a sin nπx a · for even n = 2 , 4 , 6 , 8 ,... and ψ n ( x ) = 0 for | x | > a/ 2. So we recognize that the given wavefunction is just: Ψ( x, 0) = A r a 2 " r 2 a sin ± 2 πx a + r 2 a cos ± 3 πx a # = A r a 2 [ ψ 2 ( x ) + ψ 3 ( x )] (a) [5 points] Let’s assume that the normalization factor A is real: 1 = Z -∞ Ψ * ( x, 0)Ψ( x, 0) dx = A 2 a 2 Z -∞ [ ψ 2 + ψ 3 ] * · [ ψ 2 + ψ 3 ] dx = A 2 a 2 Z -∞ [ ψ * 2 ψ 2 + ψ * 3 ψ 3 + ψ * 2 ψ 3 + ψ * 3 ψ 2 ] dx = A 2 a 2 [1 + 1 + 0 + 0] since the wavefunctions ψ n ( x ) are orthonormal A = 1 a (b) [3 points] for either of these correct expressions for Ψ( x,t ) : Ψ( x,t ) = 1 a sin ± 2 πx a e - iE
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 3

midsol08w - PHYS 115A Midterm Solutions Winter 2008 Problem...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online