MIDTERM4 - midterm 04 – PAPAGEORGE, MATT – Due: Apr 30...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: midterm 04 – PAPAGEORGE, MATT – Due: Apr 30 2008, 11:00 pm 1 Mechanics - Basic Physical Concepts Math: Circle: 2 π r , π r 2 ; Sphere: 4 π r 2 , (4 / 3) π r 3 Quadratic Eq.: ax 2 + bx + c = 0, x = − b ± √ b 2 − 4 a c 2 a Cartesian and polar coordinates: x = r cos θ, y = r sin θ , r 2 = x 2 + y 2 , tan θ = y x Trigonometry: cos α cos β + sin α sin β = cos( α − β ) sin α + sin β = 2 sin α + β 2 cos α − β 2 cos α + cos β = 2 cos α + β 2 cos α − β 2 sin 2 θ = 2 sin θ cos θ, cos 2 θ = cos 2 θ − sin 2 θ 1 − cos θ = 2 sin 2 θ 2 , 1 + cos θ = 2 cos 2 θ 2 Vector algebra: vector A = ( A x ,A y ) = A x ˆ ı + A y ˆ Resultant: vector R = vector A + vector B = ( A x + B x ,A y + B y ) Dot: vector A · vector B = AB cos θ = A x B x + A y B y + A z B z Cross product: ˆ ı × ˆ = ˆ k , ˆ × ˆ k = ˆ ı , ˆ k × ˆ ı = ˆ vector C = vector A × vector B = vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle ˆ ı ˆ ˆ k A x A y A z B x B y B z vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle vextendsingle C = AB sin θ = A ⊥ B = AB ⊥ , use right hand rule Calculus: d dx x n = nx n − 1 , d dx ln x = 1 x , d dθ sin θ = cos θ , d dθ cos θ = − sin θ , d dx const = 0 Measurements Dimensional analysis: e.g. , F = ma → [ M ][ L ][ T ] − 2 , or F = m v 2 r → [ M ][ L ][ T ] − 2 Summation: ∑ N i =1 ( ax i + b ) = a ∑ N i =1 x i + bN Motion One dimensional motion: v = d s dt , a = d v dt Average values: ¯ v = s f − s i t f − t i , ¯ a = v f − v i t f − t i One dimensional motion (constant acceleration): v ( t ) : v = v + at s ( t ) : s = ¯ v t = v t + 1 2 at 2 , ¯ v = v + v 2 v ( s ) : v 2 = v 2 + 2 as Nonuniform acceleration: x = x + v t + 1 2 at 2 + 1 6 j t 3 + 1 24 st 4 + 1 120 k t 5 + 1 720 pt 6 + ... , (jerk, snap, ... ) Projectile motion: t rise = t fall = t trip 2 = v y g h = 1 2 g t 2 fall , R = v ox t trip Circular: a c = v 2 r , v = 2 π r T , f = 1 T (Hertz=s − 1 ) Curvilinear motion: a = radicalBig a 2 t + a 2 r Relative velocity: vectorv = vectorv ′ + vectoru Law of Motion and applications Force: vector F = mvectora, F g = mg, vector F 12 = − vector F 21 Circular motion: a c = v 2 r , v = 2 π r T = 2 π r f Friction: F static ≤ μ s N F kinetic = μ k N Equilibrium (concurrent forces): ∑ i vector F i = 0 Energy Work (for all F): Δ W = W AB = W B − W A F bardbl s = Fs cos θ = vector F · vectors → integraltext B A vector F · dvectors (in Joules) Effects due to work done: vector F ext = mvectora − vector F c − vector f nc W ext | A → B = K B − K A + U B − U A + W diss | A → B Kinetic energy: K B − K A = integraltext B A mvectora · dvectors , K = 1 2 mv 2 K (conservative vector F ): U B − U A = − integraltext B A vector F · dvectors U gravity = mg y , U spring = 1 2 k x 2 From U to vector F : F x = − ∂ U ∂x , F y = − ∂ U ∂y , F z = − ∂ U...
View Full Document

This note was uploaded on 03/02/2009 for the course PHY 58235 taught by Professor Kleinman during the Spring '09 term at University of Texas at Austin.

Page1 / 18

MIDTERM4 - midterm 04 – PAPAGEORGE, MATT – Due: Apr 30...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online