lec14 - ’OCQ.’ w‘mnsiom CUHOm We dxfiferepce...

Info icon This preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 4
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 6
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 8
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ’OCQ.’ w‘mnsiom - CUHOm We dxfiferepce, berm/gem «he, Jr'vuo (1.08135 251~ XL : 94 ~92, )3 indepencien‘r- CD(l w Ofld \Lhms "preserved. :46 Analehdfi/ Came, "n because we, 3 d\FFWHO\+Qd +0 953;!- Uhe +Qn89n+§‘ *W’CzDWJOJ Sir/1C9; WP w’bZOFO but SQ ) 1 w“(zo)#02 whefl ma 0 back fioéa "Fabio“ Exponsom we, md ,Qme the; angle. berm/€80 WW9. Cumves IS doublfld., ‘ t , I ,, wczy wczab) :2— w (5°)(z;zo)"+ hot. Q) Wok/diam 010 We Curve C, In Uhe, Z—plong by an (Mg/e, sargcw’cam Im____ \Lhe w’plo & (9; [an M Chan 9, (OCQM b um; sea/ZI: ,, ¥QQ lw’évi )/ Slnéflj j . WC )— C w ,0 [w/Cfiofl .— IIm / a W230) /= I’m ml (£3 wca9f ..... 29a, 23-20 2920 £4.47 7 here, )z-gct )5 when (an \L-h‘w Line er/ome 0nd IWC£J~WC£D)/ i3 (mg COFFQSDOflC/m 19%? 114/ We W’Dbi’le [Ct/SO Obwous ATM 7&yfo SMLQ" 6‘9 @7746 M09 1/05 Q local IHVQVSQJI LC wcz)= UCX/flDJ—CVCX/Ej) ) woe/m 2:800 is Uhe, [VIVEVSJQJ (/0.th / / _ ..__. 8 CW) “ 00/07:) How do we, Khouj dine, [five/3Q“ 9405567: Prom “he Tubbr 394M652 WC23—wca0) = W'CaOXz-zo) + h.o.Jc - w’czb) Cam be, wewed as Q, LH’NQQU‘ opemobr (Q 2!; MQLH‘IX) 00 “he, .Complgx numbers (V‘QWQd‘ C15 ‘h/OO-CMMQHSLOflqfl W05) She, imv£r3£., Map 13 (2&0? ”I“; w 7 7 2; W(zo)( Ca)— wc 0)) : 3M0) (my; W5 @er W, m} Mae-W mo)“ 40 See how Mus Works: From Etc—D .' . z . _ ,, (UL me) + Lama) = W cagfix-m-‘rcurtfifl 'W/CZD) f3 V\(‘\C3€.D‘Qfld€r\+7 OP- dn’BC/HOQ éaZb m (re—Q ‘Z-u r Wage, are) We mo vamp we, used {0 deve (Hi/A i W W i i --'Z-‘";N?:*~“~‘«""" 0 Use CD +0 Conerwud- gnaw @perodow (2n; gMaw{M) (U—Uo> ‘- (MK — x)(x‘_xb> V—v _ 9 V {/L - x x. \/ y 56'- A IH’WEQY‘ OpfideOV‘ gi IIS “”1 Y6!” hble, IIF dei 56-790. Budd detd”: (43+sz : IWQZOHL , 740 am“, w’cao)#0 @ (9f! 0 more bbcd scale/J7 Confionmafl , Mappmas Can '9, used +0 Wansfbmu Wag shape, OP 0 nglon. E760 MID/6.5 " W: 3102 = SlflCx-H‘xl) = StnxCOShY-i-‘LUDsXSInhY .Confiormcu MODpinafi ore usePuJ Eur Sch/MS Laplace's Equcd’fon {YL Mo dnmens’mn‘; 4 8. . €J erJrros Fah as M n ems‘ah’cs hCOJL‘ 70/0 w B . 1 Cf; , 2 J hUdFOdL/nomacs) (Ll EPIC/Hit] .. . +WO dimmsi'005,,.,. 16, ,,Sufl:1’CIICV7+‘WJDLDF UhVTQaez , , Clurmen._5‘1,onc17{wpmg_£:x45_7 LOW) ,no ClepmdM%_ ,, 7 On ,One/ Cartesian.“ @30dech _ Law .3 M mm? W) Congwqyje,‘ e 1i_;;i;; G) Harm/109719 Exflgfions WE: Harri/105m Funcfiémm (@0011 Honrvqmg Funcfions écdwst Lap/aegis ,Q/Clpl/LOJ’VOVW qu:o) and \lth the, . .7 Feed and ima'mar poms DP (111023th ijcA’b/W are, Ctrmjmlc. Con u affls, The reason wee) conforM preservés soIMbVWS +0 Laplaces :1 ts \H/zod‘, an Onod fig Punghorw o On aria/575.9 vcumohom ‘13 Qnalzjhc~you COLA r . diHEfQflfiQf-e, H‘ because, @fl \IVIQ (aha/1’37.“ Smhnfj \L'Hls more format/(8‘. TN!" sz) -— MCX/j)-+CVCXj:j) arm/aha, and imaps v /\ assume Pow“ :3 DE A Slmphd’rflEW’uf‘ WCZ) \lhe, CEOMCLEhS ~___.____> > are Simply )< [L Conned-ed ECnol- Z ~p\o«ne, W~p10n Q G necessffifl .L I hm] v) ~:5 hQrMO/Mc, 'In D“, Wan HCX/fl) = VI(UCx/3)Jvcxjj)> ‘IS thr‘MOfi'lc. "’L Dz E ?roovc-’ We, Kflow E004] v) has Q hanmo/ug Cofiéuam-e (we, §QLQ bow +0 eonsrrucj— IE‘ , €0ml?€P)) com ‘:t 8chng ,, , , Then, @(LO) = Fla/5M) +L8£LLJVJ E15. oflalflfigflgE . p: Since, WC&) '15 analafio ”12 D; LUNG, Peal E [30:04- 05 \Lhe, COMDOS'H-z punchom CE (L065) E 15 0’50 hor‘MOrilc, , ESE) E @ ConPoma/ Maps .W i; Ceondzfiohs Ofl , L\H"l€, (Jf‘CU’WOHXF‘C‘I) 700:” 5 3 . n E M I (POSS): C1)n5+onF on V‘he, beau/Eda." ) 60 we, correspond/mg fund—Ion A In. Wing HQ; k COPPQq’DOflC/(nfj boa/Klara _ 1 Wmamm a“- =0) flow/10L! clertvaE’H/Q/ ‘3 7:00 - QE- ane, bounci'ar‘v} (no flow 00d“ GE: WHQEE GD 5+cd1 ha UHIS More, Porn/(alga: éCOflFO’FMQ( ON C. LQJ‘ be, \WIQ, Ima- Q, pl: C under \lhe, +wonsfionmcxfion WC2) 2 \/ \(A 412) _ > )4 __—\___>,w % ——p|om€, W—pmme, I? (11003 P Q Eric/hon “Ct/{J V) réqfisdg‘ebr h= he or dh V—VF'J , , , , , , , “v V n, _) , , conshm+ 7 normal ,,d£o:4mb~m,m (Dlmchlei) , ,, m 7, _, 7 _ , +0 [-7 , (NeuMQnI19_ ,, , {We/m o‘fonj C W49, pane/1’10?) HCXJU) = HCUCXJS) ) VCx)5)) 60455585 WW, Corre$pondM3 COndzhén H: ho 937% a w x N. _ , Same, Conway/7+ normal demrahve Os abovg +0 CL, ”PM: TDIr‘scHdL 0359/15 9/065, F1410 % Hz ho b defimhm H) which +ok65 Q Value af- 09.3) %%+ Comeapmcb 7‘0 WE VQIMQ (>7C H (1+ WWQ < Cormespondmg Dbrfl+ Cqu). JVeuMcmn CQSQ, 'IS +V‘ICKIQr‘) and Q arm INVOIV€§ 1Emdl'n COLOVQB Q’Oflj Which h and KIA/1&5 fiH owe Cons+an+- d") :0 ON r7 ,hOV‘MCLJ, (Mid~ vedor kg. dh A A _\ /\ as V’W'n =0 >>Vth ; 7 0+ (W0) our From Calculus 5W1”? 0* (tax) \c. Vh fins mgenhm V oer (MEN/b). GPOxOHCfler are orVJhOSOanO +07 ,le/vél cum/Q3 (own/£3 .. where J15Cc>ns+). Since Vh , Hinge/d +0 Y”, (“may be, ”1. level, tum/fer. pwsmfig v OR 37h , ,,_7.,..hva,) 5b., TOx Jayme/L __ b “Ki,“ 11,25 3,7 11 g. "hi? \the, flofiMQA L0 77 V \‘S « ” TL 7 ‘\Ofl%en+ +0 we, cum/Q ,_ ‘49 W hmjvy: hA (Q cons+arfij THIS ,Oxlso rde/Cu'nes cx \eve,\ Curve m “he Z—plome $4093) = hELLCx/S)j vaJU)]—'jx1 , Smog, C—9V OanL ch ' ‘ 3C, , P .L (h; “0 J firm, level Curve) / ‘7?va? d- Qoflouqs b\/ CORPOK‘MOLM‘Q. (which preserves angles)”; @ UGLQ- We. Image. 0? Q ievel Cum/E. Y3 (NSC) Ox lave Curve. (MW. Dxmdnlfi’r). I? N 'Is 0 u‘mi‘ Vfidor‘ HOPMOJ +0 Q od- ACXojxjo) (w‘hr‘ch maps +0 (uojvo) Vlox wcafl/ \Mfien N I54 mnggnlr +0 um, \eval Curve, TH;J;14 ) 50 V H (U‘fimch \S OLISO QDQV‘WHOMCLJQV" +0 \lhe. Wye) curve.) Sounstes VHJ. N and \7H N: O 1 dH —“ A Wham SI’flfiQ. (HT) =VH'N We. Caefir‘ J CH4 * d—N=O 04‘ pond—rs Om C. Now; Here 1/09,qu gssmrnQd Vh-‘IEO. _I~p Vb: 0 when H— com be shown. $14 I: IVh u w’(a)|:_o :7 chain @aamh W," ‘Hs WNCqudr-wy ,—,,,RLQ.L4QD_D _ O 0 ES mE’Q. Flt/{1d Flow mfiomppessnkie Jnrofczhoml non— vvscous 'p’bkld Flow In a Wedge. Flow 15 Lm [Form H plo—Fes 'POF pF‘OM U he. Cor nar‘ _ r, Q23 boumdcmtj CbmchHOn'. g: :Q J 9| e. flOPMOd :Cgmpoflefl‘r CD’C VGJOédb“ O) ho P1000 \lhf‘OL/Lah game wculs. {C0053 Clair“ We, WQHSQOPMOJWOH W = ZT/X «‘23: ,;. agxn/ —— —— ~—-_> ‘unes: ~_ 2 (13'1th o“ .9 WW, Sotudmon ‘m ulna w—plome, \5 +mv1CLL ._ CD (312th a)___ = a «a 3 1M : ‘ (1),, Mo and 7 u .7 #me , ) % 5: ‘ C4005?) 'm Uhe,d“r1€£hbr\ \\ mMngvls ’ = somhon +0 \Llne, Omg’jmw problem t3 d>= Cong" Qe(2 Tl“) (005+ r“ "‘ (103 (I?) H we, Wm gamma «Y m Coflu we, OP eflher 7V and form _ Mme? C$CC>M€21 <PPO 7%in In we w<f3pmfl€ W=Qon5f--Ijn(w) Comm/x ,‘ mm 7 ; 12‘qu ’9 (0 Consfanf’) {3011003 \Hne HOJec/for Of— q 7 “genie/d 90”“le . ME Imfiw) COHS‘OH Claw (HESQboK 4% IV» ‘thf (:th we. Know was was king Dual/d“ (answer? En, SaervaJLPU velociwtj Quad 713 WlpOFM 5.1. 40 imagimrj 0x13: E: Aw= d>+t7p Q=ACL Flow ll +0 SurPoce => equ‘mmmhals Hwy- ”39, J— JrO SULFPQQQ, - ‘Foh £204 VISCDUS Clutd5)\1lnef€, is Q (”9360? boundcmb andxhbmr [19 $3) a4— me. 77 boundonflj .CLLLJ V: 03:0. Th6 wflJr—r‘CDduCES , Ox narrow Pager“ 0+ We bowwdmg) CQH€C( Q .JQCDumoiOkrj ‘Q¢€F) ,{rl LONG/N Qhe velocxhj__,,, QYIQ Veg .&p\CQUQ. To Hrsolygjwfnw p Madam” SPOKQSHka, \thm Sim eJ Vflomgmw-“ V‘SCOUS WSOLLALH-on Exp prom {LA/1e, 7 ,, bowfldour‘j r and ., Muff/h ‘Hc. , +0 MAE, thunj Slasdef‘ solufion (we wen'Jr d0 Mg 3 v Y“: WKdW/‘t OP‘ We. ,7 “ boundaflj , > lmfew , , C S ‘Examgle ’. E [Wosmnh'c‘y E led/Pig Plaid Inflmsrflj E repreSet/fi Mae QYCIL iéxzerl’ed on a [Ar/NF C‘J’UFBB placed 0d- 0; : (CW/ELI”! 136MH- :3...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern