L05 - A ∪ B Union of two or more solids creates a...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
    Solid Modeling – Primitives  and Boolean Operations  GE101 Engineering Graphics and Design
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Solid Primitives  Primitives  are simple solid objects  created directly in a CAD system Examples include: box, sphere, cylinder,  cone, wedge, torus
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Model Building in AutoCAD Length  - in x axis direction Width  - in y axis direction Height  - in z axis direction Length, width and height can be  positive or negative  A positive dimension indicates  movement in direction of positive axis A negative dimension indicates  movement in opposite, or negative  direction In AutoCAD, the following dimensions are  associated with the three coordinate axes:
Background image of page 4
    Solid Composites Primitives combined using  Boolean  operations  to create  solid composites Boolean operations used in solid modeling  are:  Union Intersection  Subtraction
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Union Union means set of all elements  belonging to either A or  B
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: A ∪ B Union of two or more solids creates a composite solid composed of combined volumes of these solids In set theory, the union of two sets, A and B, is represented pictorially as: Intersection Set of all elements belonging to both A and B A ∩ B Intersection of two or more solids creates a composite solid composed of volume common to original solids Intersection of two sets, A and B: Subtraction 1 Set of all elements belonging to A but not B A – B Subtraction of two solids creates a composite solid composed of volume of first solid minus common volume shared with second solid Subtraction of two sets, A and B: Subtraction 2 Alternatively, B - A is represented pictorially as: Solid Modeling – Primitives and Boolean Operations Chega !...
View Full Document

This note was uploaded on 03/02/2009 for the course GE 101 taught by Professor Leake during the Fall '05 term at University of Illinois at Urbana–Champaign.

Page1 / 10

L05 - A ∪ B Union of two or more solids creates a...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online