soln5 - Probability and Stochastic Processes: A Friendly...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Goodman Problem Solutions : Yates and Goodman,3.1.2 3.3.2 3.4.2 3.5.2 3.6.2 3.6.3 and 3.7.3 Problem 3.1.2 On the X , Y plane, the joint PMF is y x P X , Y ( x , y ) 3 c 2 c c c c c 2 c 3 c 1 2 1 (a) To find c , we sum the PMF over all possible values of X and Y . We choose c so the sum equals one. x y P X , Y ( x , y ) = x =- 2 , , 2 y =- 1 , , 1 c | x + y | = 6 c + 2 c + 6 c = 14 c Thus c = 1 / 14. (b) P [ Y < X ] = P X , Y ( ,- 1 )+ P X , Y ( 2 ,- 1 )+ P X , Y ( 2 , )+ P X , Y ( 2 , 1 ) = c + c + 2 c + 3 c = 7 c = 1 / 2 (c) P [ Y > X ] = P X , Y (- 2 ,- 1 )+ P X , Y (- 2 , )+ P X , Y (- 2 , 1 )+ P X , Y ( , 1 ) = 3 c + 2 c + c + c = 7 c = 1 / 2 (d) From the sketch of P X , Y ( x , y ) given above, P [ X = Y ] = 0. (e) P [ X < 1 ] = P X , Y (- 2 ,- 1 )+ P X , Y (- 2 , )+ P X , Y (- 2 , 1 )+ P X , Y ( ,- 1 )+ P X , Y ( , 1 ) = 8 c = 8 / 14 1 Problem 3.3.2 On the X , Y plane, the joint PMF is y x P X , Y ( x , y ) 3 c 2 c c c c c 2 c 3 c 1 2 1 (a) To find c , we sum the PMF over all possible values of X and Y . We choose c so the sum equals one. x y P X , Y ( x , y ) = x =- 2 , , 2 y =- 1 , , 1 c | x + y | = 6 c + 2 c + 6 c = 14 c Thus c = 1 / 14. (b) P [ Y < X ] = P X , Y ( ,- 1 )+ P X , Y ( 2 ,- 1 )+ P X , Y ( 2 , )+ P X , Y ( 2 , 1 ) = c + c + 2 c + 3 c = 7 c = 1 / 2 (c) P [ Y > X ] = P X , Y (- 2 ,- 1 )+ P X , Y (- 2 , )+ P X , Y (- 2 , 1 )+ P X , Y ( , 1 )...
View Full Document

Page1 / 6

soln5 - Probability and Stochastic Processes: A Friendly...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online