{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

HW5_Soln

# HW5_Soln - Masnari/Escuti/Brickley 2008 ECE200 Fall 2008...

This preview shows pages 1–3. Sign up to view the full content.

Masnari/Escuti/Brickley 2008 ECE200 – Fall 2008 – Homework 5 Periodic Signals in the Time Domain Page 1 of 13 1. [16 pts total, 1/3 pts each part each quantity] Find the amplitude, peak-to-peak value, average (DC) value, frequency, period, and phase angle of the following sinusoidal waveforms: a. ) 8 / 50 2 cos( ) 8 ( 2 ) ( π π + = t V V t v b. ) 8 / 50 2 cos( ) 8 ( 2 ) ( π π = t V V t v c. ) 8 / 50 2 sin( ) 8 ( 2 ) ( π π + + = t V V t v d. ) 8 / 50 2 sin( ) 8 ( 2 ) ( π π + = t V V t v e. ] 8 / ) 50 / 2 cos[( ) 8 ( 2 ) ( π π + + = t V V t v f. )] 002 . 0 ( 50 2 cos[ ) 8 ( 2 ) ( + + = t V V t v π g. ) 50 2 ( cos ) 8 ( 2 ) ( 2 t V V t v π = h. ) 50 2 ( sin ) 8 ( 2 ) ( 2 t V V t v π + = a) ) 8 / 50 2 cos( ) 8 ( 2 ) ( π π + = t V V t v Amplitude = 8 V Peak-to-peak value = 16 V Average (DC) Value = 2 V Frequency = 50 Hz Period = 1/ (50 Hz) = 0.02 s θ = - π /8 radians b) ) 8 / 50 2 cos( ) 8 ( 2 ) ( π π = t V V t v Amplitude = 8 V Peak-to-peak value = 16 V Average (DC) Value = -2 V Frequency = 50 Hz Period = 1/ (50 Hz) = 0.02 s θ = (- π /8 + π ) radians or (- π /8 – π ) radians c) ) 8 / 50 2 sin( ) 8 ( 2 ) ( π π + + = t V V t v Amplitude = 8 V Peak-to-peak value = 16 V Average (DC) Value = 2 V Frequency = 50 Hz Period = 1/ (50 Hz) = 0.02 s To find the phase, we need to convert sine to a cosine. Consider the following identity: sin α = cos( α - π /2) Thus, sin(2 π 50t + π /8) = cos(2 π 50t + π /8 - π /2) = cos(2 π 50t - 3 π /8) θ = -3 π /8 radians

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document