This preview shows pages 1–3. Sign up to view the full content.
Chapter 6: How to Value Bonds and Stocks
6.1
a.
$1,000 / 1.05
10
= $613.91
b.
$1,000 / 1.10
10
= $385.54
c.
$1,000 / 1.15
10
= $247.18
6.2
The amount of the semiannual interest payment is $40 (=$1,000
×
0.08 / 2).
There are a
total of 40 periods; i.e., two half years in each of the twenty years in the term to maturity.
The annuity factor tables can be used to price these bonds.
The appropriate discount rate to
use is the semiannual rate.
That rate is simply the annual rate divided by two.
Thus, for
part a the rate to be used is 4.0%, for part b the rate to be used is 5% and for part c it is
3%.
a.
$40
40
04
.
0
Α
+ $1,000 / 1.04
40
= $1,000
Notice that whenever the coupon rate and the market rate are the same, the bond is
priced at par.
b.
$40
40
0.05
Α
+ $1,000 / 1.05
40
= $828.41
Notice that whenever the coupon rate is below the market rate, the bond is priced
below par.
c.$40
40
0.03
Α
+ $1,000 / 1.03
40
= $1,231.15
Notice that whenever the coupon rate is above the market rate, the bond is priced
above par.
6.3
Semiannual discount factor = (1.12)
1/2
 1
=
0.058300
=
5.83%
a.
Price
= $40
40
0.0583
Α
+ $1,000 / 1.0583
40
= $614.98 + $103.67
= $718.65
b.
Price
= $50
30
0.0583
Α
+ $1,000 / 1.0583
30
= $700.94 + $182.70
= $883.64
6.4
Effective annual rate of 10%:
Semiannual discount factor = (1.10)
0.5
 1 = 0.048809 = 4.8809%
Price
= $40
40
0.048809
Α
+ $1,000 / 1.048809
40
= $697.71 + $148.64 =$846.35
6.5
$923.14 = C
30
0.05
Α
+ $1,000 / 1.05
30
= (15.3725) C + $231.38
C = $45.00
The annual coupon rate = $45.00
×
2 / $1,000 = 0.09 = 9%
6.6
a.
The semiannual interest rate is $60 / $1,000 = 0.06.
Thus, the effective annual rate
is 1.06
2
 1 = 0.1236 = 12.36%.
b.
Price = $30
12
0.06
Α
+ $1,000 / 1.06
12
= $251.52 + $496.97 = $748.49
c.
Price = $30
12
0.04
Α
+ $1,000 / 1.04
12
= $281.55+ $624.60= $906.15
Answers to EndofChapter Problems
B41
This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentNote: In parts b and c we are implicitly assuming that the yield curve is flat.
That is, the
yield in year 5 applies for year 6 as well.
6.7
a.
P
A
= $100
20
0.10
Α
+ $1,000 / 1.1
20
= $1,000.00
P
B
= $100
10
0.1
Α
+ $1,000 / 1.10
10
= $1,000.00
b.
P
A
= $100
20
0.12
Α
+ $1,000 / 1.12
20
= $850.61
P
B
= $100
10
0.12
Α
+ $1,000 / 1.12
10
= $ 887.00
c.
P
A
= $100
20
0.08
Α
+ $1,000 / 1.08
20
= $1,196.36
P
B
= $100
10
0.08
Α
+ $1,000 / 1.08
10
= $1,134.20
6.8
a.
The prices of longterm bonds should fall.
The price of any bond is the PV of the
cash flows associated with the bond.
As the interest rate increases, the PV of
those cash flows falls.
This can be easily seen by looking at a oneyear, pure
discount bond.
P
= $1,000 / (1+i)
As
i
increases, the denominator, (1 +
i
), rises, thus reducing the value of the
numerator ($1,000).
The price of the bond decreases.
b.
This is the end of the preview. Sign up
to
access the rest of the document.
 Fall '08
 Wood

Click to edit the document details