hw3.6 - Math 43 Fall 2007 B Dodson Week 9 Monday Finish Suggested Hw8 start on Hw9 material 1 Determinants 2 Properties of Dets 3 Eigenvalues and

# hw3.6 - Math 43 Fall 2007 B Dodson Week 9 Monday Finish...

• Notes
• nizhes
• 7

This preview shows page 1 - 4 out of 7 pages.

Math 43, Fall 2007 B. Dodson Week 9: Monday: Finish Suggested Hw8; start on Hw9 material 1. Determinants 2. Properties of Dets 3. Eigenvalues and Eigenvectors
2 We compute det 2 1 5 4 2 3 9 5 1 using the (first) row expansion (by minors): det ( A ) = 2 fl fl fl fl 2 3 5 1 fl fl fl fl - 1 fl fl fl fl 4 3 9 1 fl fl fl fl + 5 fl fl fl fl 4 2 9 5 fl fl fl fl = 2(2 - 15) - (4 - 27) + 5(20 - 18) = 2( - 13) - ( - 23) + 5(2) = - 26 + 33 = 7 . ———– Problem Reduce A = 2 1 3 5 3 0 1 2 4 1 4 3 5 2 5 3 to an upper triagular matrix and use the reduction to find det ( A ) . Solution: A - 1 1 2 3 3 0 1 2 4 1 4 3 5 2 5 3 ( r 1 - r 2 )
- 1 1 2 3 0 3 7 11 0 5 12 15 0 7 15 18 ( r 2 + 3 r 1 , r 3 + 4 r 1 , r 4 + 5 r 1 ) - 1 1 2 3 0 3 7 11 0 5 12 15 0 1 1 - 4 ( r 4 - 2 r 2 ) - 1 1 2 3 0 1 1 - 4 0 5 12 15 0 3 7 11 ( r 2 r 4 ) - 1 1 2 3 0 1 1 - 4 0 0 7 35 0 0 4 23 ( r 3 - 5 r 2 , r 4 - 3 r 2 ) - 1 1 2 3 0 1 1 - 4 0 0 - 1 - 11 0 0 4 23 ( r 3 - 2 r 4 ) - 1 1 2 3 0 1 1 - 4 0 0 - 1 - 11 0 0 0 - 21 = U ( r