natural deduction problems - ⊃ G) (~ G ∨ H) ⊃ (D∙F)...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
1. A (B C) ~ C / ~ A ~ B 2. C (B∙D) B E C / E 3. M (B∙D) ~ B / M 4. A ≡ B B C / ~ A C 5. (A∙B) C A∙ ~ C / ~ B 6. (B A) C ~ B D ~ D / C 7. A∙B C ~ B ~ D C / D 8. A B C ~ B D ~ (A C) / ~ D 9. D ~ A ( ~ A B) C ~ D ~ D / C 10. A B (A C) A B C / B 11. W ~ (U S) / W U 12. H (I J) ~ I / H J 13. S T S T / T 14. K L / K (L M) 15. O (P Q) P (Q R) / O (P R) 2/05 16. A B ~ A ~ A (H∙L) (H∙B) (B∙H) K / K 17. ~ K N (J∙K) L (J L) M / K (M∙N) 18. A (B C) C (D∙E) / A (B D) 19. [L∙(M N)] (M∙N) / L (M N) 20. E S E (S N) S (N B) / E B 21. ~ A∙ ~ B C ≡ (A v B) / ~ C 22. A (B∙C) (C D) H / A H 23. D C C (D v F) ~ F / D 24. A ~ B C (A∙B) D ≡ C / ~ D 25. ~ S (~ R∙T) R S / ~ R 26. (K P) M K (P∙D) / M 27. A (V∙R) B (D∙S) / (A R)∙(B S) 28. A B / (C A) (C B) 29. (D E) (F
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ⊃ G) (~ G ∨ H) ⊃ (D∙F) / ∴ G 30. A ∨ (B∙C) A ⊃ C / ∴ C 31. ~ A ∨ B ~ A ∨ ( ~ B ∨ C) / ∴ ~ A v C 32. A ⊃ B B ⊃ C / ∴ A ≡ (A∙C) 33. ~ T v [(U v W) ⊃ V] / ∴ T ⊃ (U ⊃ V) 34. A ⊃ B C ⊃ (D∙E) / ∴ (A∙C) ⊃ (B ≡ D) 35. A ⊃ B C ⊃ D / ∴ (A∙C) ⊃ (B∙D) 36. T ⊃ W B ⊃ (V∙S) / ∴ T ⊃ [~ (W∙V) ⊃ ~ B] 37. L ∨ (M∙N) M ⊃ ( ~ L ⊃ ~ O) O / ∴ L 38. R ⊃ (~ A∙T) B ∨ ~ S R ∨ S / ∴ A ⊃ B 39. (A ∨ B) ⊃ ~ (D ∨ E) D ∨ C C ⊃ (B∙H) / ∴ (A ∨ B) ≡ C 40. (A ∨ L) ∨ M L ≡ M / ∴ M ∨ A 41. (M ∨ N) ⊃ (O∙P) (O ∨ Q) ⊃ ( ~ R∙S) (R ∨ T) ⊃ (M∙U) / ∴ ~ R 42. M ⊃ (N ⊃ O) ~ N ⊃ P (M ⊃ P) ⊃ (O ∨ ~ Q) / ∴ ~ O ⊃ ~ Q 43. (P ∨ W) ⊃ ~ T S ⊃ (Q∙U) R ⊃ (S ∨ T) / ∴ (P∙ ~ Q) ⊃ ~ R 44. A / ∴ B ∨ ~ B...
View Full Document

This note was uploaded on 04/28/2008 for the course PHILOSOPHY philosophy taught by Professor T.downing during the Spring '08 term at Western Washington.

Ask a homework question - tutors are online