# 2016量子-37 - *3.7*3.7.1(Floquet-Bloch U x a U x a 1 2 H...

• 3

This preview shows pages 1–2. Sign up to view the full content.

1 *§3.7 周期性势场中的能带结构 *3.7.1 有限平移不变性 弗洛盖 - 布洛赫 (Floquet-Bloch) 定理 粒子在周期性势场中运动时，它的状态介于束缚态与非束缚态之间，而能谱具有带式的结构。 以一维情况为例，周期性势场就是 ) ( ) ( x U a x U , 其中 a 是满足此式的最小正数，称为势场的周期，所以粒子的哈密顿量 2 1 ˆ ˆ ( ) 2 H p U x m 在有限平移变换 x x a 下保持不变。这也是一种对称性。虽然它并不导致什么守恒量，但仍然有非常丰富的物理结果。 问题仍然是求解能量本征方程 2 2 ( ) 0. m E U x   Floquet 定理：周期性势场中的波函数 ) ( x 满足条件 i ( ) e ( ), Ka x a x 其中 K 是常数。由于 K 2 / a 为周期，所以通常选它在区间 ( / , / ) a a 中变化，这个区间称为 第一布里渊 (Brillouin) 区，简写为 1st BZ 。满足上述条件的函数称为 准周期函数 。定理的严格证明这里从 略。直观来看，粒子在周期场中出现的几率也是周期性的，所以 2 2 ) ( ) ( x a x ，因此 ( ) x a ( ) x 有一个相位因子的差别。 Bloch 定理：周期性势场中的波函数可以写为如下形式： i ( ) e ( ), Kx K x x 其中 ) ( x K

This preview has intentionally blurred sections. Sign up to view the full version.

This is the end of the preview. Sign up to access the rest of the document.
• Spring '16
• Hong Shengjie

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern