{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

inverse and hyperbolic

# inverse and hyperbolic - Inverse Trigonometric...

This preview shows pages 1–2. Sign up to view the full content.

Inverse Trigonometric Function/Hyperbolic Function Identities for Inverse Trigonometric Function: 1 1 1 1 1 1 1 1 1 1 2 2 cos cos ( ) sin cos / 2 sec cos (1/ ) csc sin (1/ ) cot / 2 tan 1 cos2 sin 2 1 cos2 cos 2 x x x x x x x x x x x x x x π π π - - - - - - - - - - + - = + = = = = - - = + = Identities for Hyperbolic Function: 2 2 2 2 2 2 2 2 2 2 sinh 2 2sinh cosh cosh 2 cosh sinh cosh 2 1 cosh 2 cosh 2 1 sinh 2 cosh sinh 1 tanh 1 sec coth 1 csc x x x x x x x x x x x x x h x x h x = = + + = - = - = = - = + Derivatives of the Inverse Trigonometric Function: 1 2 1 2 1 2 1 2 1 2 1 2 (sin ) / , 1 1 (cos ) / , 1 1 (tan ) / 1 (cot ) / 1 (sec ) / , 1 1 (csc ) / , 1 1 d u du dx u dx u d u du dx u dx u d u du dx dx u d u du dx dx u d u du dx u dx u u d u du dx u dx u u - - - - - - = < - = - < - = + = - + = - = - - Derivatives of the Inverse Hyperbolic Function: 1 2 1 2 1 2 1 2 1 2 1 2 (sinh ) / 1 (cosh ) / , 1 1 (tanh ) / , 1 1 (coth ) / , 1 1 (sec ) / , 0 1 1 (csc ) / , 0 1 d u du dx dx u d u du dx u dx u d u du dx u dx u d u du dx u dx u d h u du dx u dx u u d h u du dx u dx u u - - - - - - = + = - = < - = - = - < < - = - + Integration Formulas for Inverse Trig Functions: 1 2 2 2 2 1 2 2 1 2 2 2 2 sin , ( ) 1 tan ,( ) 1 sec ,( ) du u C valid for u a a a u du u

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}