This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: ME163 Mechanical Vibrations (Winter 2009) HW1 Due 1.15.08 in class25% if late within 24 hours50% if later than that 1. This problem is a review of some necessary background from mathematics. Consider the following differential equation x ( t ) + 2 x ( t ) + 2 = y ( t ) + 2 Such equation are often solved by taking the Laplace transform of the input y ( t ) and output x ( t ) which is defiend as follow X ( s ) = integraldisplay e st x ( t ) dt Y ( s ) = integraldisplay e st y ( t ) dt where s is a complex number. Take the Laplace transform of both sides of the equation with x (0) = x (0) = 0 ,y (0) = 0 to obtain X ( s )( s 2 + 2 s + 2) = Y ( s )( s + 2) Divide X ( s ) by Y ( s ) to obtain a quantity called the Transfer Function H ( s ). H ( s ) = X ( s ) Y ( s ) = s + 2 s 2 + 2 s + 2 Later we will see that it determines how the output x ( t ) depends on the input y ( t ).We shall see more about H ( s ) later in the course, for now we would like to play with complex number We call the roots of the polynomial in the numerator of the transfer functin as zeors and that of the denominator as poles . Find the zeros and poles of the transfer function.....
View Full
Document
 Winter '08
 Mezic,I

Click to edit the document details