This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Lecture 15: Forced vibrations, 2DOF systems 0.1 Matrix methods for 2DOF system with forcing We have seen how matrix methods simplify analysis for free vibration of 2DOF. Now we use those to enable analysis of forced systems. We will see how the use of diagonalization discussed in the previous lecture enables us to solve such, relatively complex problems. Consider the vector x = ( x 1 ,x 2 ) of positions for a linear vibrat ing system with 2DOF. Let the force on the system be expressed as Bu ( t ) where B is a 2 2 matrix and u ( t ) the forcing vector u ( t ) = ( u 1 ( t ) ,u 2 ( t )) T . Equations of motion can be written in matrix form as: M x = Kx + Bu ( t ) . We premultiply by M 1 and rewrite this as x = M 1 Kx + M 1 Bu ( t ) . From the previous lecture, we know that we can simplify this system by using the change of voordinates y = V 1 x where V is the eigenvector matrix. We obtain y = Dy + V 1 M 1 Bu ( t ) ....
View
Full
Document
This note was uploaded on 03/23/2009 for the course ME 163 taught by Professor Mezic,i during the Winter '08 term at UCSB.
 Winter '08
 Mezic,I

Click to edit the document details