This preview shows page 1. Sign up to view the full content.
Unformatted text preview: problem by adding the dynamical constraint with a Lagrange multiplier function, and then solve the resulting EulerLagrange equations. (b) Add u as a state using the equation u ( t ) = v ( t ), and now v becomes the input to be optimized. This is now in the standard form for optimal control problems. In fact, it is a minimum energy state transfer problem, but with only part of the states specied at the end points Use both methods above to solve this problem and compare the two. 1...
View
Full
Document
This note was uploaded on 03/23/2009 for the course ME 254 taught by Professor Bamieh during the Winter '09 term at UCSB.
 Winter '09
 Bamieh

Click to edit the document details