11_12_DynamicReliability - CEE 597 - Lecture 11 & 12...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
 13 February 2008 Jery Stedinger 1 Dynamic Reliability of   
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
 13 February 2008 Jery Stedinger 2 PRELIM EXAM Thursday, March 6, 2008,  in evening,  7:30 - 9:00 pm Hollister B-14 and 110.   Learning objectives and old exams  distributed Friday, Feb. 22
Background image of page 2
 13 February 2008 Jery Stedinger 3 Where We Are – Reliability See top of Homework Sheets This week Wed. - Friday lectures addressing  reliability of complex systems and networks. Handout Dyn. Reliability; plus in packet  Yen&Tung; Material has two lessons for us.   1. One is methodology of calculating reliability of parallel, series  and other systems and networks.  2. Second is an appreciation of impact on system reliability of  components in parallel, series and other configurations.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
 13 February 2008 Jery Stedinger 4 Where We’re Going – Risk Profiles See top of Homework Sheet Please READ LNG Terminal Raj and Glickman, “ Gen. Hazardous Material Risk  Profiles on RR Routes” RP Examples in  CEE 597 Packet Next Week Friday lecture  is about accident response; no reading
Background image of page 4
 13 February 2008 Jery Stedinger 5 See top of Homework Sheet Starting Feb 25  review of statistical concepts followed on  Feb. 27-29 discussion of transportation risks. Read class review material on statistics (or your  own book) For Feb. 27  READ Barnett  et al . “Airline Safety: Some Empirical  Findings” plus Barnet and Higgins This material will provide an opportunity to consider the statistical  analysis of accident data.  It will provide a review of statistics. A risk  analysis course would not be complete without statistics.
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
 13 February 2008 Jery Stedinger 6 Taylor Series For continuously differentiable functions,  near  a point  x 0 , the value of f(x)  should be well approximated by the first few terms of the Taylor series: f(x) = f(x 0 + (x–x 0 ) f ’(x 0 + (1/2) (x–x 0 ) 2  f ”(x 0 + (1/3!) (x–x 0 ) 3  f’”(x 0 ) + … Beware Taylor series may converge only for small neighborhood of x 0 . Taylor Series Examples    [x 0  = 0] exp(x)  = 1 + x + x 2 /2 + x 3 /6 + x 4 /4! + … sin(x)  = x – x 3 /3!  + x 5 /5! – …   ln(1+x) =  x –  x 2 /2  +  x 3 /3  – x 4 /4 + …
Background image of page 6
 13 February 2008 Jery Stedinger 7 Integrals for Reliability Calculations Constant c is introduced in indefinite integrals because they do not  specify upper and lower bounds on the interval over which the integral 
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 48

11_12_DynamicReliability - CEE 597 - Lecture 11 & 12...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online