SolSec 4_3 - Problems and Solutions for Section 4.3(4.34...

Info icon This preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Problems and Solutions for Section 4.3 (4.34 through 4.43) 4.34 Solve Problem 4.11 by modal analysis for the case where the rods have equal stiffness (i.e., k 1 = k 2 ), J 1 = 3 J 2 , and the initial conditions are x (0) = 0 1 ! " # $ T and ! x 0 ( ) = 0 . Solution: From Problem 4.11 and Figure P4.11, with k = k 1 = k 2 and J 1 = 3 J 2 : J 2 3 0 0 1 ! " # $ % & !! + k 2 ( 1 ( 1 1 ! " # $ % & = 0 Calculate eigenvalues and eigenvectors: J ! 1/2 = J 2 ! 1/2 1 3 0 0 1 " # $ $ $ % & ! K = J ! 1/2 KJ ! 1/2 = k J 2 2 3 ! 1 3 ! 1 3 1 " # $ $ $ $ % & ( det ! K ! ) I ( ) = ) 2 ! 5 k 3 J 2 ) + k 2 3 J 2 2 = 0 ) 1 = 5 ! 13 ( ) k 6 J 2 ( * 1 = ) 1 , and 5 + 13 ( ) k 6 J 2 ( * 2 = ) 2 ! 1 = 5 " 13 ( ) k 6 J 2 # 5 + 13 ( ) k 6 J 2 " k 3 J 2 " k 3 J 2 5 + 13 ( ) k 6 J 2 $ % & & & & & & & ( ) ) ) ) ) ) ) v 11 v 12 $ % & & ( ) ) = 0 # v 11 = 1.3205 v 12 # v 1 = 0.7992 0.6011 $ % & ( )
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
! 2 = 5 + 13 ( ) k 6 J 2 " # 1 # 13 ( ) k 6 J 2 # k 3 J 2 # k 3 J 2 1 # 13 ( ) k 6 J 2 $ % & & & & & & & ( ) ) ) ) ) ) ) v 2 11 v 22 $ % & & ( ) ) = 0 " v 21 = # 0.7522 v 22 " v 2 = # 0.6011 0.7992 $ % & ( ) Now, P = v 1 v 2 ! " # $ = 0.7992 % 0.6011 0.6011 0.7992 ! " & # $ Calculate S and S -1 : S = J ! 1/2 P = 1 J 2 0.4614 ! 0.3470 0.6011 0.7992 " # $ % & S ! 1 = P T J 1/2 = J 2 1/2 1.3842 0.6011 ! 1.0411 0.7992 " # $ % & Modal initial conditions: r 0 ( ) = S ! 1 " 0 ( ) = S ! 1 0 1 # $ % & ( = J 2 1/2 0.6011 0.7992 # $ % & ( ! r 0 ( ) = S ! 1 ! " 0 ( ) = 0 Modal solution: r 1 t ( ) = ! 1 2 r 10 2 + ! r 10 2 ! 1 sin ! 1 t + tan " 1 ! 1 r 10 ! r 10 # $ % & ( r 2 t ( ) = ! 2 2 r 20 2 + ! r 20 2 ! 2 sin ! 2 t + tan " 1 ! 2 r 10 ! r 20 # $ % & ( r 1 t ( ) = 0.6011 J 2 1/2 sin ! 1 t + " 2 # $ % & ( = 0.6011 J 2 1/2 cos ! 1 t r 2 t ( ) = 0.7992 J 2 1/2 sin ! 2 t + " 2 # $ % & ( = 0.6011 J 2 1/2 cos ! 2 t r t ( ) = 0.6011 J 2 1/2 cos ! 1 t 0.7992 J 2 1/2 cos ! 2 t " # $ $ % &
Image of page 2
Convert to physical coordinates: ! t ( ) = S r t ( ) = J 2 1/2 0.4614 " 0.3470 0.6011 0.7992 # $ % & ( 0.6011 J 2 1/2 cos ) 1 t 0.7992 J 2 1/2 cos ) 2 t # $ % % & ( ( ! t ( ) = 0.2774cos ) 1 t " 0.2774cos ) 2 t 0.3613cos ) 1 t + 0.6387cos ) 2 t # $ % % & ( ( where ! 1 = 0.4821 k J 2 and ! 2 = 1.1976 k J 2 ,
Image of page 3

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon