# SolSec 4_3 - Problems and Solutions for Section 4.3(4.34...

This preview shows pages 1–7. Sign up to view the full content.

Problems and Solutions for Section 4.3 (4.34 through 4.43) 4.34 Solve Problem 4.11 by modal analysis for the case where the rods have equal stiffness (i.e., k 1 = k 2 ), J 1 = 3 J 2 , and the initial conditions are x (0) = 0 1 ! " # \$ T and ! x 0 ( ) = 0 . Solution: From Problem 4.11 and Figure P4.11, with k = k 1 = k 2 and J 1 = 3 J 2 : J 2 3 0 0 1 ! " # \$ % & !! + k 2 ( 1 ( 1 1 ! " # \$ % & = 0 Calculate eigenvalues and eigenvectors: J ! 1/2 = J 2 ! 1/2 1 3 0 0 1 " # \$ \$ \$ % & ! K = J ! 1/2 KJ ! 1/2 = k J 2 2 3 ! 1 3 ! 1 3 1 " # \$ \$ \$ \$ % & ( det ! K ! ) I ( ) = ) 2 ! 5 k 3 J 2 ) + k 2 3 J 2 2 = 0 ) 1 = 5 ! 13 ( ) k 6 J 2 ( * 1 = ) 1 , and 5 + 13 ( ) k 6 J 2 ( * 2 = ) 2 ! 1 = 5 " 13 ( ) k 6 J 2 # 5 + 13 ( ) k 6 J 2 " k 3 J 2 " k 3 J 2 5 + 13 ( ) k 6 J 2 \$ % & & & & & & & ( ) ) ) ) ) ) ) v 11 v 12 \$ % & & ( ) ) = 0 # v 11 = 1.3205 v 12 # v 1 = 0.7992 0.6011 \$ % & ( )

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
! 2 = 5 + 13 ( ) k 6 J 2 " # 1 # 13 ( ) k 6 J 2 # k 3 J 2 # k 3 J 2 1 # 13 ( ) k 6 J 2 \$ % & & & & & & & ( ) ) ) ) ) ) ) v 2 11 v 22 \$ % & & ( ) ) = 0 " v 21 = # 0.7522 v 22 " v 2 = # 0.6011 0.7992 \$ % & ( ) Now, P = v 1 v 2 ! " # \$ = 0.7992 % 0.6011 0.6011 0.7992 ! " & # \$ Calculate S and S -1 : S = J ! 1/2 P = 1 J 2 0.4614 ! 0.3470 0.6011 0.7992 " # \$ % & S ! 1 = P T J 1/2 = J 2 1/2 1.3842 0.6011 ! 1.0411 0.7992 " # \$ % & Modal initial conditions: r 0 ( ) = S ! 1 " 0 ( ) = S ! 1 0 1 # \$ % & ( = J 2 1/2 0.6011 0.7992 # \$ % & ( ! r 0 ( ) = S ! 1 ! " 0 ( ) = 0 Modal solution: r 1 t ( ) = ! 1 2 r 10 2 + ! r 10 2 ! 1 sin ! 1 t + tan " 1 ! 1 r 10 ! r 10 # \$ % & ( r 2 t ( ) = ! 2 2 r 20 2 + ! r 20 2 ! 2 sin ! 2 t + tan " 1 ! 2 r 10 ! r 20 # \$ % & ( r 1 t ( ) = 0.6011 J 2 1/2 sin ! 1 t + " 2 # \$ % & ( = 0.6011 J 2 1/2 cos ! 1 t r 2 t ( ) = 0.7992 J 2 1/2 sin ! 2 t + " 2 # \$ % & ( = 0.6011 J 2 1/2 cos ! 2 t r t ( ) = 0.6011 J 2 1/2 cos ! 1 t 0.7992 J 2 1/2 cos ! 2 t " # \$ \$ % &
Convert to physical coordinates: ! t ( ) = S r t ( ) = J 2 1/2 0.4614 " 0.3470 0.6011 0.7992 # \$ % & ( 0.6011 J 2 1/2 cos ) 1 t 0.7992 J 2 1/2 cos ) 2 t # \$ % % & ( ( ! t ( ) = 0.2774cos ) 1 t " 0.2774cos ) 2 t 0.3613cos ) 1 t + 0.6387cos ) 2 t # \$ % % & ( ( where ! 1 = 0.4821 k J 2 and ! 2 = 1.1976 k J 2 ,

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document