Formulae_Mech_page2

# Formulae_Mech_page2 - Oscillation motion 1 f = T = 2 T 2 2...

This preview shows page 1. Sign up to view the full content.

Oscillation motion f = 1 T , ω = 2 π T SHM: a = d 2 x dt 2 = - ω 2 x , α = d 2 θ dt 2 = - ω 2 θ x = x max cos( ω t + δ ), x max = A v = - v max sin( ω t + δ ), v max = ω A a = - a max cos( ω t + δ ) = - ω 2 x , a max = ω 2 A E = K + U = K max = 1 2 m ( ω A ) 2 = U max = 1 2 k A 2 Spring: ma = - k x Simple pendulum: ma θ = mα‘ = - mg sin θ Physical pendulum: τ = I α = - mg d sin θ Torsion pendulum: τ = I α = - κθ Gravity ~ F 21 = - G m 1 m 2 r 2 12 ˆ r 12 , for r R , g ( r ) = G M r 2 G = 6 . 67259 × 10 - 11 Nm 2 /kg 2 R earth = 6370 km, M earth = 5 . 98 × 10 24 kg Circular orbit: a c = v 2 r = ω 2 r = 2 π T · 2 r = g ( r ) U = - G m M r , E = U + K = - G m M 2 r F = - d U dr = - mG M r 2 = - m v 2 r Kepler’s Laws of planetary motion: i ) elliptical orbit, r = r 0 1 - ² cos θ r 1 = r 0 1+ ² , r 2 = r 0 1 - ² ii ) L = r m Δ r Δ t -→ Δ A Δ t = 1 2 r Δ r Δ t = L 2 m = const. iii
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Ask a homework question - tutors are online