ELEG205HW8

ELEG205HW8 - (a) (ds=-1000ij1000s'l; (e) 12(1): 8 + 2 CBS...

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (a) (ds=-1000ij1000s'l; (e) 12(1): 8 + 2 CBS t‘mV camiot be attributed a single complex frequency. In a circuit analySIS problem, superposition will need to be invoked, where the original ﬁmction L is expressed as v(z‘) = v16) + 1220‘) with 1210?) = 8 mV and 122(1) = 2 cos th The com I i , . p] ‘ frequency of Mr) 1 and the complex frequency of 1:20!) i E Q = 9443“ ,uc, s = j207r. Thus, g L: 9cos(20m: + 43°) ,uC. (3)Att=1,q(1)“—* q(1.)=._9cos(207r+43°) pc 6582;10- - (‘0) Maximum (0 -NO. The 'i'ndication would be enegaﬁve real part in the ceﬁlpllex frequency. 10. (a) “(0.1) f—* (20 — 1'30) e('2+j50)(0'1) = (36.06 2' -5631“) cm W : 36.06e‘0-Zz [56.310 +j5(180)/ 7:] = 29.52 42302" (or 29.52 21—1298” V). (b) Re{ vs } ={ 36.06 62’ cos (50c— 56.31") V. (C)R6{Vs(0.1) } = 29.52 cos (230.2”) = £18.89 V (d) The complex frequency of this waveform is 3 =52 +j50 s"1 (c) 5* z (—2 +j50)* = -2 — 1'50 6'1 ' is: I "Le; vSM = (102:? Let ifarcgd : Ime . 1 ' ‘ _ _ L __ R: diﬁvrced (a) V303 +I ' Ext-9 .52};st '- WV I , a supetpoSit'iOn of our actual voliages and currents with corresponding imaginaiy ccmpcneﬁié. Substituting, 1047356“ = Me“ +Lse"1 - [1] 1043” d 104:5" R_+sL 100+(—2+j10)2x10‘3. = 0.11299" orI: Thus, i(t) = Rcﬁes‘} : 0.1521005 (102: + 2.990) A. (b) By Ohm’s law, 10‘) 2 1005(1): 10 e‘zf‘cos (10: + 299°) V. We obtain 1220‘) by recognising from Eq. [1] that V; e“ = LseS'I , 01‘ V2 = (2x10’3)(92 +j10)(0.142.99°) = 2.0441043" mV - Thus W) = 2.046” cos (10-: + 104.30) mV . ' V37=10€-2: co-S(10t+30°)V 5-5 = ‘2+j10: Vs =104309 V (b) _ _ _ w. _1_.5 .128"? 25 j125_ ] _ N 600+ﬂ°°0 10 5 —1—j5m_—5—j25 _ 5_ (—25—;125)/26 C_—-2+j10 —-1+j5 26 Z - '— (—5'—j25+I30)/26 , Z 26 _12"5—125 _ 5—11 — _ __ 1 104300 (—5—j25)/26- 10430° —5—j25 5430o msm 125 150° —1—j5 ‘- x-——— —___. W — 4+j4 5+(—5—j25)/26”94+j4 130—5—j25_2+j2 125—j25"2+j2 S—jl —j1 Z.” =5+0.5(—2+j10)—j1:4+j4g | H I\ U.) C 0 ice) 03536;” cos(10t—105°) A 1‘ , = 203'” cos 4: A, 1' r: 3063‘ sin4tA s. I 52 .T-Sl=2040°,132 _ —j30,§=-—3+j4 .226: 10. —3—j4 —3+;4 —3wj4 v =20_5(7.2+j6.4) X ~6+j8 (—6+j8)(3.8-j1.6) " —2.2+ 1‘64 4.2+ j6.4 4-2+ j6.4 _ —600+ jSOO —- j30(~—22.8+12.8+ 1304+ j9.6) _ —600+ j800— j30(—10+ 1'40) 7 . ‘7 - —2.2+j6.4 '_ ~2_2+ j6.4 _ ='185.15‘z—47.58°V “2-2+j6»4 ' g =0.4(—3—j4) 24.2—11.6, 2L = —6+j8 —j30. “1722+ 16.4 vx(t) = 185-135“ cos(4t —47.53°)V 26?? . - = \ _— '- 40+—~ = 20+500s ) 1|. (40+5005) Zm [20+2x10f3s] M 2x10‘3s] ( ‘1 _. . 805’ +' 3000§+25566\$ _ W 50 16(O-25) 50 16s r15s2+50s+4000 ' (a) ZER=—+—«—_=~+ .s 16+O.25 s s+80 s2+803 (b) Z,.n(j8) = "1024+ 4090+J4°0 = 0.15842— j4.666 Q _ ~64+j640 _ (c) Zita (“24—16) ___ 5-85014w114399 r —32-—_}24—160+}480 ~ , d 50 0.2 sR 0.2125"- +10s + 50R ( ) z +—~——= 2: , s R + 0.28 0.25 + Rs . zines) = aggro}? 55R = 50, R , (e) R ...
View Full Document

This note was uploaded on 04/03/2009 for the course ELEG 205 taught by Professor Weile during the Fall '08 term at University of Delaware.

Page1 / 4

ELEG205HW8 - (a) (ds=-1000ij1000s'l; (e) 12(1): 8 + 2 CBS...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online