Unformatted text preview: ) . 7. Show that the parametric curve x = t 2 , y = t 34 t has two tangent lines at the point ( 4, 0 ) , and ﬁnd equations for both lines. 8. Find the value (sum) of the series ∞ ∑ n = 1 1 3 2 n1 . 9. Find the Taylor polynomial T 2 ( x ) at a =1 for the function x 3 . 10. Find lim x → e 4 x14 x x 2 . d dx ( sin1 x ) = 1 √ 1x 2 d dx ( tan1 x ) = 1 1 + x 2 1sin 2 θ = cos 2 θ 1 + tan 2 θ = sec 2 θ sin 2 θ = 1 2 ( 1cos 2 θ ) cos 2 θ = 1 2 ( 1 + cos 2 θ ) Logistic equation: dP dt = kP ³ 1P K ´ , P ( t ) = K 1 + Aekt , A = KP P θ π 6 π 4 π 3 π 2 2 π 3 3 π 4 5 π 6 π cos θ 1 √ 3 2 1 √ 2 1 21 21 √ 2√ 3 21 sin θ 1 2 1 √ 2 √ 3 2 1 √ 3 2 1 √ 2 1 2...
View
Full
Document
 Fall '08
 wang
 Math, Calculus, Parametric equation, wolf population, circle final answers, essentially unlimited food

Click to edit the document details