qf-ef152-2008-08-soln

qf-ef152-2008-08-soln - EF 152 Exam #1, Fall, 2008 Page 1...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: EF 152 Exam #1, Fall, 2008 Page 1 of11 Name: :oL Kl n \l Section: Net ID: l R f ’5}, Guidelines: - Assume 3 significant figures for all given numbers unless othenNise stated a Show all of your work — no work, no credit - Write your final answer in the box provided '1 Constant Acceleration Uniform Circular Motion Universal Law of Beat ‘01 : w] + am 11,, — centripetal acceleration Gravitation Frequency v — speed mlmz f2 -f1 _ (01 + (oz p e radius of curvature Fa = G 2 61 _ 61 + 2 N w— rotational speed " ,u 7 2 Z T_ period G = 6.67x10 N-m‘/kg Kepler's Third 62 = 6] + a). At + eaAt f — frequency , _ Pendulums a); _ wlz of angle 6‘, = H, + -7 - g ' 2a 2 SImplc: a) : 7 v an : — (any CUI'Ve) Satellites Center of Mass _ p 2 Physical: a) : 1 fl va — mf+mfi+m+mf alt—P!” I v = R: ll __ nn v:w re+h 117144722 +--~+ m” p — _ 271 Speed of Sound in Air 20an ‘j v:(331+0.60T)m/s = ,‘ Harmonic Motion 1 T in “C ‘ w — angular frequency 2 — U _ GmM A — amplitUde T Sound Level — r :7— Srtggiss A3 : PA¢ la — referertzce intensity, rear/h = — a) = 2 1x10' W/m 6 6_ phase angle 7U" I_ intensity 6‘378x10 m xa— initial displacement _ I v0 — initial velocity SWSS/ St’a'" [3(in dB) = 1010g— mean]! = , F _ FL 1 5‘976x1024k , Stress e — AL — e 0 g x(t) :Asm(mt+6) A AE = a Sin a), + a COS wt AL Doppler Shift Natural Freq: l ( ) 2 ( ) Strain = 7 f0 _ frequency String v(l) : Aa) 005(0)! + 6) F— shifted frequency A — wavelength _ - v — velocit of medium L — Len th _ a' (0 CO4”) ‘ a2 a) smfim) Paralle’ AXIS Theorem vs — veloci¥y of source 11 — harngwonic a“) = _Aa,3 sin(w; + 5) I = 1L,” + Mai2 v,— velocity of observer T— tension 2 ' 2 Moving source towards it — mass per = —a]a) sm((ul)—alw cos(a)t) Impulse /M°mentum observer unit length Ila?! +1252 2 1'5],+[252, f1: f0 f—frequency k , 1 — (v) /v) u a) ’ E Z M' : 216 + fdt Moving observer 1,, = 7 2 2 0 towards source A = a. + 112 — v , L L L 5 Torque f :f0[1+;] f" 2,, 2L y -1 a, v §:tan —' T=Frsm€ _ g a, _ _ _ Oppostte Signs (+,—) 2' :i x F used for source/observer 7 V_0 _ f 2 167 moving away from a! a) a: — X" “L” observer/source. EF 152 Final Exam, Fall, 2008 PageZoftt Wave Equation Fluids 1" Law of Thermodynamics Entropy v — velocity p — pressure U — internal energy It “Q A — amplitude h — height W — work done by thermal AS = 7 k — wave number p — mass density system A T w — angular frequency v — velocity Q — heat flow into thermal Mia/(Si A — wavelength K — empirical constant system TB VB f—frequency A —area AU = _W +Q AS=Cv ln—+"Rln— . Aafi AaB A V A Z(X,l) : Asm(k;\’—a)t) _ _ _ . Bernoui/lr's Eguation H v = if 1 eat p + — pvl + pg}, = Q— heat Molecular Thermal k _ 277 ' 2 ' ‘ 0— specific heat Physics 7 7 1 1 K— thermal conductivity m — mass of a molecule p2 + 5 pv; + pghI R — thermal resistance M — molecular mass n — number of moles $3539,” Power, m 2 Heat Capacity N — number of molecules E_energy LEpKAv szcAT U_N lm<v2> l— intensity Thermal Conductivity _ 2 P,— power Water Properties & 7 _KA T2 — Ti _ _A T2 _Ti 3 P - average power 0 = 1 cal/(9°C) At T L _ R U = _nRT , 1 , 6'09 = 0‘5 cal/(9‘ C) Thermal Resistance 2 E : 2”~w,f-A~ L; = 79.6 cal/g L SRT 3kT -_ ,7 2 2 2 LV=540callg RZL vm: _: _ LUZ—“fl” p=1glcm3=1kglL K V M V m P =47r‘tltf2A‘ cosl(k\‘—(ul) p = 1000 kg/gn3 Thermal Resistance Series : z 2 2 p=62.4|b/ft : I 2”} pvf A R47 R1 + {23 Efficiency L : L]: Latent heat of Thermal Resnstance Parallel General I. "2' fusion 1 1 (A A J W Q l 2 LV=Latentheatof 7: —+— I]:——:1— f F: vaporization Ref Al + A2 R1 R2 Q», Q/, Wave Speed J Otto C ole T— tension Ideal Gas Law Work Of Thermal Systems r 7 compression ratio p — mass per unit length PV = "RT V2 1 E — modulus of elasticity R = 8.314J/(moI-K) W 2 deV 17 =1— ? p — mass density pV .—_ NkT ,1 V T k = 1.35X10'23J/K Isobaric (constant pressure) ——Lcam°t C de Transverse V : Z Avogadrzg's Number: W : p(Vfl — VA) ,7 =1_£ Qt : Tr E 602x“) AQ = ncéAT Th Q1, Th Longitudinal V = — Standard Pressure and lsochoric (constant volumel ,0 Temp W = 0 Refrigerators 273K 100 atm AQ = “LAT Genera, Natural Frequencies: (101‘3kpa) lsomermal {constant ‘emm K e coefficient of perf. Air Columns . H — heat current Conversion V A — wavelength 4186 J = 1 cal W = "RT 1n _1 P — power input L — Length Vl f — frequency _ K : = E V _ velocity Thermal Expansron AQ = W lWl P M Adiabatic A = 0 v=Af Al=aIOAT 1 Q], : W+QC First harmonic: Linear Stresses W = 7107.4 VA ‘ pBVH) Carnot A = 4L (closed pipe) 0. : aEAT T A = 2L 0 en ipe) - c' m“ = " ( p p Volumetnc y : _p < 1 Th _Tt AV = ,BVOAT c; EF 152 Final Exam, Fall, 2008 Page 30m EF 152 Final Exam, Fall, 2008 Page4of11 2. A solid cylinder is rolling along a horizontal surface with a speed of 4.3 We It then rolls down a 10° incline that 11m} 1‘ is 7 m long. Determine the speed of the solid cylinder at the bottom of the incline "5 _ .. 5 a e e o/; lg I Solid md about Cylindrical shell Solid cylinder Solid sphere pcrpclltllcular JIXiS almul ventral mix :llmul central axis about any diameter 1 7” rhrgughceglc: (“(777 W" W V "H I 7 7V V‘ ’_i_ V __r I V g V I V W 77 V V 7 l 2 l 2 _ 1 w I imvl iv-letmg‘l't i MR3 + R33: iMRI + i m II : wt? 2 Z q . 2 4 t2 . . 3 I l \l “ Lu T :9 l l 1 l ‘ 43w 7- m —‘ vll'r/r Vt , | M, 1 1 Mr? lya’qal /5*~(l.2le~l-;_i'< z a w 7; E ‘ I f 74 (4 y 3 S l 7. 7. (‘7 z Solid rml about E Hulltm cylinder Stilld cylllldtr I Z permtrtllnllasrrnN :lblitll t'tmtrlii axiu about diameter 'l‘lim spilcrlual sllell 3 through end tilmtlgllcenlcr Jl‘rfllll any drummer $2 45 l' 4 . C: 22 ‘l’ l \ ~ q 3 I Z V; a _- $- ITA % m I v ~ 5‘ was”) “"3” Cal”. The exam consists of 15 problems, each worth 6 points, and 10 concept questions, each 1 ‘ ' “ .5 47’ I? Mir‘ 5"}, 6,1? WM worth 1 point. —L(’ 7% Whfl’lg Z #21145. 1. A figure skater with a mass moment of inertia of 0.8 kg—m2 is spinning with an angular momentum of 5.0 N-m-s. The figure skater raises her arms so her mass moment of inertia is 1.2 kg-mzr What is her rotational kinetic 3_ A 1.2 m long. 30 gram stick pivots about a point 02 m below the top‘ The mass moment _ energy afler ralsmg her armS? of inertia about the center of mass is 3.69-m2. Determine the mass moment of inertia about E A the pivot point. 0! O \ b. 4 M .M 8 4 _ L a.“ . r: T M l a m “' s v— r ‘2 ta I : M 0 ~ twp Luz “MW” “ ° “W 3 '3 k r 1 w 2 s E 5.0M.“ :02 2 M) '1 7T”. Mcl v0»: . :4 U) : Aflloj r“(l/sac. 7. 1 \L r6¢_l — — 3(0 “M + 309 (o'4m I z_ t 13(4't67—— ‘ lo.4;N-m ~ . 5 o \(E‘r'i—l—u} - '2- (lleas‘m Sn 3 3 ,(a l 4 . 8 _ . . , L t MQC/ 0/ 2 M (c2)um wl_5,o Nms 1 8.4 (rm; x V ® No units/incorrect unil'S _ _ J' z W l n M ill/aw Used KE =1“? l? m Found LO: 4.17 rdd/s ,did not ' calculale l<£ EF 152 Final Exam, Fall, 2008 Page 5 of11 4. Determine the magnitude and direction of the vertical reaction at the pin support (point A) of the beams 200m 3ft 10ft 4ft \DDll) 30° 20°”) 3:“ - _ (:1 :m ——'> t H“ TVA ‘ V54“ R39 g: m ‘ 4i ‘1 230lb(’)_ $43 + \oo lb cos3o° U3“ yvhnomm V 2 HJEELB : l52.&ll~ 1 G \D - z Fro-ac M. V B -2 NoT'lHCt-umuz. Incl» — | up“. “HI-h:th (280 -1 H"? Div-Bt—fi 3" ‘954 al can“.st 5‘ The free body diagram of a ladder leaning against a frictionless wall is shown at the right. For W = 54 lbs, L = 10 ft, and e = 60°, determine the minimum coefficient of static friction to keep the ladder from sliding. 2R: F N=o film“ in P—w 0 P’“ \f z . 2 JEEME" NJL SmB ‘W?cn‘e O y; N’ztme W j) =5 - ii —, 71:9 73’- s P ‘w _’-—-—-- Zlemg W EF 152 Final Exam, Fall, 2008 Pages of11 6‘ Lane Kiffin has a spring with a constant of 25 Win Determine the weight that needs to be hung from this spring so that the period of oscillation in simple harmonic motion is 0.8 seconds. ~ 12.51 l . \s‘? llo “‘3 " M‘l H “b 3 b) “l 3‘“‘“‘*""“°:txi\r [5) w fill 1 1:1 — 7 am WV”; q -3 (MA use T O.8§€£ w: ' é‘B ‘ 2- u—‘JQ m k 2 Lb. . ‘34: 1,5. W— 02> - l: .5 M': —— 3 S m Q“ .—- {4/1 w— m a L '78”A”°llz 5 l L. b '6: Q\ RU.)th mg 5 .‘lt'; 7. A small door to allow LazyDog to pass in and out of the house has a mass, m of 0.45 kg. a width, w, of 28 cm, and a height, h, of 40 cm. The door is hinged along the top of the 28 cm width‘ The mass moment of inertia of the door about the center of mass axis shown is mh2/12. Determine the frequency of oscillation of the door. ofiosllz or“ 6.0QM‘l/5 ‘ “"1 a "3.: L“ I ‘1. 7. ml‘ ‘3';- Twimr ‘ T” * M Q“ = 0.45% 6"“ \7. (p — O.QY4\<1"“I K DD V Chaise” [2% Z (k, ‘ View? to .321} —. 28 cm 40 cm JE- rngll‘ c S “m...” : Of?st 3 Hz 3cm axis EF 152 Final Exam, Fall, 2008 Page7of11 EF 152 Final Exam, Fall, 2008 PageSof11 F 69'! u A-\ 10. Water is flowing through a 3 cm diameter pipe with a speed of 4.2 m/s. On the 7‘" floor (elevation 23 m) the pressure in the pipe is 120 kPa. Determine the pressure in the pipe on the 10'” floor (elevation 33 m). 8. You are driving your pickup truck at 20 mph. A tuba player in the back of the truck emits a sound with a constant frequency of 75 Hz. Determine the frequency that a person in a car moving at 60 mph towards you hears. Assume the speed of sound is 767 mph, 7 ’H 1 i a 3 n a b - 4.-.“..- ; 2 \ ."~\ we QQMM‘ 19mph l 751i; Ba =nnt*v**> V‘Aitv‘gé l (‘1 .4:— Mou'tAs: *awnreh‘ ekserv=r~ f 2 WK 1 ‘ ’ V- 5‘ ck \* 23 V127"; Bunny“ PH “ZEN.” Gem 9:121?” 9’ 1 A; erg (H Vr Melisa ogservgf‘ :._77_08\~\3<K¥ (£23113: 83.53\-\1 ‘ZQX\OOL3 £11 + o = ?L —" 757Mph @ (fild Lawns Valtu. Gar '\\’/ 0‘5“! Sf'a'd “'9 50w“ arabgrvefi‘ @ corona $i%n used Us“; £21031: (WW =7%.%Hz ‘ ,1 r M .1? WM 1), l/e' 11. An ideal ga ccupies 1.2 m3 at a gauge pres ure of 1 .0x105 Pa and a temperature of 27°C. The gas expands to a volume of 1.6m3 and is heated to a temperature of 87°C, while 20% of the gas molecules escape. Determine the new gauge pressure of the gas. p‘v. pzvz c>.7c.2) it 3 DJ 3 ___* _ CL] ‘ mm. => F a Vohlh‘ (ewa‘gBfi w 5001 (\‘ox\os+ \.O\3MD:B(\.ZV3\) (pz+\.0l?:‘l‘ii><"8“‘33 9. A 40 pound container floats in water with 16% of the volume of the container above water. Determine the volume of the container. soot _ 7 . new..ng 40%“: VU(QZ‘4\b/;‘3) PM” 2 W U.rivw(i_“b;;z-73 o-SDVW (1??)‘813 '= 0.64l §ie in w°¥‘” V“ 0 (tom \o&)<\-Z\ _ <?L+\.o\3‘to‘\(\-%\ Boo vwc(\wmm3V 3 V 1 0.1153 @ueed FM : 0534 w ' 02/71 not ‘l‘D'tOJ 29 Found VoluML Md“ war .2/ V‘ l % V11 (97 WM EF 152 Final Exam, Fall, 2008 Page90f11 12. 2 kg of ice at -10°C is added to a cooler that contains 12 kg of water at 30°C, Determine the final temperature of the water. Assume that there is no heat loss to the surroundings. 6.0K ‘ q. csK tc‘l Zkfi(0;:‘::\ O'(-lo°;\> + 2k: 7 :6: i \ZkECVC L \ _ tztitgyw—oi ‘0 {1(T_3a\ +2_(T—o\:Q Sb“— 36L} “3+ ism; * —ieo,e~+i4~rro —r-: l5.<93°C . \4.‘l‘c o.s(‘f-(-\°\)@ 2&9 “Le. 9' l(T"("°)) @ p° L9 lZ. C 13‘ A thermodynamic cycle is shown in the following figure, Determine the amount of work done during one cycle. Assume the gas is an ideal diatomic gas with v=1i4. p (kPa) 0.56" ('l“) wage V ’2 Wag: Plle'n—C i \.2 Z 800* t: <03?» Q’“ : 3311“) S 800 Isothermal 3'41 200 __ -\gooc:> T 0.3 1.2 w To+~g~$1~7lo_\goooo L\¢\c_ » \gznic '3 EF 152 Final Exam, Fall, 2008 Page 10 of 11 14, To warm up your room on a cold winter’s day. you turn your air conditioner around in the window so cold air is being exhausted to the outside, and warm air to the inside If 4000 kJ of heat energy are required to keep the room warm, and the air conditioner has a coefficient of performance of 3, determine the amount of work the air Mfimu \~ \lmtt Qw‘iwe” 0;. \<=—— Qm:w+ac_ AccoltTT RH Kw: 15. Calculate the change in entropy of 2 kg of water when it is heated from liquid water at 60°C to steam at b.) WI.sz =4c.) 100°C. \ (A. flew—“=5 3‘“ 7: \ '5 \oo 72 , gm; AT 4. 2.1;“. AS ’ T l 373 \C \ \oco’ ‘4.“39—5 : - \<,c. ’Ca—\ 3 a C ' 333 => QCTKUJ l _,‘-l use QC : [-4000 H33 -l (ow/fix Qc:‘5000 in: I c ‘ T lacing 5‘» . 23‘ r so} K - 5 0m? one term _[ ow‘x‘ LL‘VS/c‘q ti Gotgte’r +213 _3 new-(X g 4.0“ T whaic?"w¢e$$ C. Q q l) 0. EF 152 Final Exam, Fall, 2008 Concept Questions: 1 point each 163. Lane and Monte are riding on a carousel. Lane is on an outer horse, 4.5 m from the center. Monte is on an inner horse, 2.5 m from the center. Who has the greatest angular velocity? a. Lane b. Monte Q2) Both have same 16-b A Pasco car. a solid sphere. and a hollow sphere start from at rest and race down an incline. Who lost the race? a. Pasco car solid sphere b. @ hollow sphere 16—c. A 2.5 ft long round brass rod with a cross— sectional area of 0.20 in2 holds up an 1800 lb chandelier. The tensile strength of the brass is 30,000 lb/inz. Determine the stress in the brass rod. a. 360 psi b. 1800 psi i g 6000 psi .9 A ' “ d. 9000 psi e. 30000 psi f. 150000 psi 16-d. The force of attraction between the earth and the moon is F. If the distance between the earth and the moon is decreased so that it is one-third of the original distance. what would be the force of attraction between the earth and the moon? a. (1/9)F b. (1/3)F c. F d 3F 9F 16-e The mass of a simple pendulum is doubled. How does the period of the pendulum change? a. Period is doubled b. Period increases by 1.4 G.) Period stays the same (1. Period decreases by 0.7 e. Period deceases by one‘half. Pagell ofll 16-f. A bassoon player produces a sound level of 80 dbel. A second bassoon player joins in, playing at the same intensity. The dbel level of the combined sound is: a, 80 dbel b. 80|og(2) dbel @ (80 + |og(2)) dbel d. 160 dbel 16-9. An open organ pipe produces a frequency of 192 Hz when the temperature is 15°C, If the temperature increases to 20°C, will the frequency be: GD > 192 Hz b. = 192 Hz c. < 192 Hz 16-h. A piece of plastic is put over a window in winter. When calculating the thermal resistance of the system, are the window and the plastic in series or parallel? (a) Series D. Parallel c. Both d. Neither 16-i. The rms speed of a molecule depends on: . Pressure b. Temperature c. Both pressure and temperature 16-]. The average translational kinetic energy of a monotomic gas is 120 J, The average rotational kine‘ energy is: OJ . 34J c. 60 J d. 80 J e. 120J ...
View Full Document

This note was uploaded on 04/07/2009 for the course EF 152 taught by Professor Ab during the Spring '08 term at University of Tennessee.

Page1 / 6

qf-ef152-2008-08-soln - EF 152 Exam #1, Fall, 2008 Page 1...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online