hw3soln

# hw3soln - (b notx1 x2 notx3 and(c x1 notx2 notx3 and(d x1...

This preview shows pages 1–2. Sign up to view the full content.

HW#3 Solutions 2/6/2009 1. (a) (b) 2. (a) a b c d f 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 (b) f(a,b,c,d) = Σ m(1,2,4,7,8,11,13,14) (c) f(a,b,c,d) = Π M(0,3,5,6,9,10,12,15)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
3. The function, f, of this circuit is equal to 0 when either none of the inputs or all three inputs are equal to 0; otherwise, f is equal to 1. Therefore, using the POS form, the desired circuit can be realized as f(x 1 , x 2 , x 3 ) = Π M(0, 7) = (x 1 + x 2 + x 3 )(x 1 ’ + x 2 ’ + x 3 ’). 4. The following circuit will generate the NOT of X. Lecture 9 1. module Q1(f, x1, x2, x3); output f; input x1, x2, x3; not (notx1, x1); not (notx2, x2); not (notx3, x3); and (a, notx1, notx2, x3); and
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: (b, notx1, x2, notx3); and (c, x1, notx2, notx3); and (d, x1, x2, x3); or (f, a, b, c, d); endmodule 2. module Q2(f1, f2, x1, x2, x3, x4); output f1, f2; input x1, x2, x3, x4; assign f1 = (x1 & ~x3) | (x2 & ~x3) | (~x3 & ~x4) | (x1 & x2) | (x1 & ~x4); assign f2 = (x1 | ~x3) & (x1 | x2 | ~x4) & (x2 | ~x3 | ~x4); endmodule 3. module Multiplexer(f, s, x0, x1) ; output reg f ; input s, x0, x1; always @(s, x0, x1) if (s == 0) f = x0; else f = x1; endmodule 1 1 X X'...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

hw3soln - (b notx1 x2 notx3 and(c x1 notx2 notx3 and(d x1...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online