Session_01 - UT D SE 3306 Mathematical Foundations of...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: UT D SE 3306 Mathematical Foundations of Mathematical Software Engineering Software a d d fi l e Do c u m e n tL i s t Fi l e M g r add( ) d e l e te ( ) Do c u m e n t nam e : int doc id : int n u m Fi e l d : i n t g e t( ) open( ) c los e( ) re a d ( ) s o rtFi l e L i s t( ) c re a te ( ) fi l l Do c u m e n t( ) re a d () fi l l th e c o d e .. fe tc h Do c ( ) s o rtBy Na m e ( ) a d d fi l e [ n u m b e rOffi l e ==M AX ] / f l a g OFF Wri ti n g Fi l e L i s t Op e n n i n g Actor A use-case 1 Actor B re p fL i s t add( ) d e l e te ( ) 1 c l o s e fi l e c l o s e fi l e Re a d i n g Cl o s i n g use-case 2 use-case 3 Re p o s i to ry (fro m Pe rs i s te n c e ) nam e : c har * = 0 re a d Do c ( ) re a d Fi l e ( ) Fi l e Grp Fi l e re a d ( ) re a d ( ) open( ) c re a te ( ) fi l l Fi l e ( ) UI MFC Doc umentApp <<entity>> Customer name addr receive() withdraw() fetch() send() RogueWave 9: sortByNam e ( ) Persis tenc e global DocumentList Repository FileManager Document GraphicFile File FileList 1: Doc view r equest ( ) mainWnd : MainWnd L 2: fetchDoc( ) 4: create ( ) 8: fillFile ( ) gFile : GrpFile user : »ç¿ëÀÚ fileMgr : FileMgr 7: read File ( ) 5: readDoc ( ) 3: create ( ) 6: fillDocume nt ( ) document : Document repository : Repository ºÐ»ê ȯ °æ95 : Ŭ¶óÀ̾ðÆ ® - À©µ µ¿ì ÀÇ Çϵå¿þ ¾î¹ × ³×Æ® ¿÷À¸·ÎÀÇ Á¤º ¸ ½Ã½ºÅÛ ¿¬°á ¸ðµ ¨ - À©µ ½º ¸Ó ½Å: ÀÀ¿ë ¼- À¯ ´Ðµ¿ì N T: ÀÀ¿ë ¼- ¹ö ¼ -¹ö, Åë ½Å ¼ ¹ö, - IBM ¸ÞÀÎÇÁ·¹ÀÓ: µ¥ÀÌŸ¹ö ¹× µ¥ÀÌŸ ¼--¹ö Åë½Å ¼ - ¹ö us er Ư Á¤¹®¼ -¿ ¡ ´ëÇÑ º¸±â ¸¦ »ç¿ëÀÚ°¡ ¿äûÇÑ ´Ù. mainWnd fileMgr :document : repository gFile FileMgrDoc ument Window95 Windows95 Windows95 3: create ( ) 4: create ( ) 5: readDoc ( ) ¹®¼ -°ü¸® Ŭ¶óÀ̾ðÆ®.EXE Windows NT Solaris ¹®¼ -°ü¸® ¿£Áø.EXE ÀÀ¿ë¼- ¹ö.EXE Windows NT IBM Mainfr ame Alpha UNIX ¹®¼ -°ü¸® ¾ÖÇø ´ 2: fetchDoc( ) 1: Doc view r equest ( ) È-ÀÏ°ü¸®ÀÚ´Â Àоî¿Â ¹®¼ -ÀÇ Á¤º¸ ¸¦ ÇØ ´ç ¹®¼Ù. °´Ã¼¿ ¡ ¼ ³Á¤À» ¿äûÇÑ´ 6: fillDocume nt ( ) 7: read File ( ) 8: fillFile ( ) È-¸é °´Ã¼ ´Â Àоº°·Î éÀÎ °´Ã¼µé ¿¡ ´ëÇØ È-¸é¿¡ Á¤·ÄÀ» ½ÃÄÑ À̸ º¸ ¿©ÁØ´Ù. 9: sortByNam e ( ) µ¥ÀÌŸº£À̽ º ¼- ¹ö Lecture 1 Introduction Instructor Information Nhut Nguyen Samsung Telecommunications America E-mail: nhutnn@utdallas.edu Phone: 972-761-7788 Web: www.utdallas.edu/~nhutnn Web: www.utdallas.edu/~nhutnn 1 The WWH of SE 3306 • What? – Studying Discrete Mathematics for software Discrete engineering engineering • Why? – Many important software applications and systems are Many built upon mathematical structures and concepts covered in this class: logic, set, graph, tree, etc… covered • How? – – – – Come to the class (attendance is required!) Be prepared and participate Do all assignments Ask questions! 3 Text Book • “Discrete Mathematics and Its Discrete Applications”, sixth edition, Kenneth H. Applications sixth Rosen, McGraw-Hill, 2007 Rosen, Class notes will be provided for topics not Class covered in the text book covered • 4 2 Discrete Math? • Discrete v.s. Continuous Discrete v.s – Digital v.s. Analogue • Discrete: consisted of separable, distinct Discrete: parts parts • Discrete Math – Study of discrete mathematical objects and structures 5 Discrete Structures • • • • • • • • Propositions Proofs Sets Functions Algorithms Integers Summations Orders of Growth • • • • • • • • • Sequences Strings Permutations Permutations Combinations Relations Graphs Trees Logic Circuits Automata 6 3 SE 3306 Course Outline • Logic and proofs • Set, functions, sequences and sums • Algorithms – Complexity (performance) • • • • • • Graphs Trees Regular expression, grammars and languages Petri Nets Finite state automata State charts 7 Questions and Questions??? • • • • • • • What is propositional logic? How to measure complexity of an algorithm? What operations can we perform on sets? What Petri nets are used for? What are software applications of trees? What is statechart? What statechart … 8 4 Example Applications of Discrete Example Math • Pythagorean Theorem: If a is the base, b is If is is the height and c is the hypotenuse of a right is triangle (a, b, and c can be any positive real triangle a, and can numbers), then numbers), a2 + b2 = c2 • Proof:? c = a2 + b2 b a 9 Example Applications of Discrete Example Math – cont’d Traveling salesman problem – Given: n cities c1 , c2 , . . . , cn distance between city i and j is dij – How to find the shortest tour? – How many possible routes? Important in VLSI design and other applications 10 5 Focus of SE 3306 • Important concepts, objects and structures of Important applied discrete math applied – – – – – Propositional and predicate logic Graphs and trees Sets completeness, compactness, soundness theorems completeness, … • Learn to use the Prolog programming language Have fun! ☺ Have fun! ☺ Have 11 Discrete Math? 12 6 ...
View Full Document

This note was uploaded on 03/26/2009 for the course SE 3306 taught by Professor Nhut during the Spring '09 term at University of Texas at Dallas, Richardson.

Ask a homework question - tutors are online