This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: MATH 118, LECTURE 31: TAYLOR REMAINDERS 1 Taylor Remainders In applications where we are required to use the Taylor series expansion of a function, we are not able to compute all of the terms in the series since there are infinitely many. As we did with standard series a few weeks ago, we will have to truncate the series at some index and hope that the truncated series is “close enough” to our desired limit to satisfy our particular application. Necessarily, when we truncate the series, there is going to be some error between the true value of the limiting function f ( x ) and the truncated Taylor series expansion. If we could get a handle on the size of this error, and show that it is in fact small enough to satisfy us, we would feel confident in using our truncate Taylor series expansion to approximate the desired function/solution. In fact, we have the following result: Proposition 1.1. If f ( x ) and its first n derivatives are continuous on the closed interval between c and x , and if f ( x ) has an ( n + 1) th derivative on the open interval between c and x , then there exists a point z n between c and x such that f ( x ) = P n ( x ) + R n ( x ) (1) where P n ( x ) = n summationdisplay k =1 f ( k ) ( c ) k ! ( x c ) k , R n ( x ) = f ( n +1) ( z n ) ( n + 1)! ( x c ) n +1 . P n ( x ) is called the Taylor polynomial and R n ( x ) is called the Taylor remainder ....
View
Full
Document
This note was uploaded on 04/14/2009 for the course ENGINEERIN MATH 118 taught by Professor Soares during the Spring '09 term at Waterloo.
 Spring '09
 Soares

Click to edit the document details