Formulae:•Linear Function:y=ax+b•Solving a quadratic function:f(x) =ax2+bx+c= 0 =⇒x=-b±√b2-4ac2a•Natural exponential function:y=Aex, wheree= 2.7182818284. . .•Natural logarithmic function:y= lnx•IfA, Bare two sets, then–TheunionofAandBis denoted byA∪B.–TheintersectionofAandBis denoted byA∩B.–ThedifferenceofAfromBis denoted byA\B.–IfAis asubsetofB, then it is denoted byA⊆B.•Theinner productof two vectorsxandyis denoted by (x·y)•Thelength(ornorm) of vectorxis denoted bykxk.•Solving aquadratic function:f(x) =ax2+bx+c= 0⇒x=-b±√b2-4ac2a•Elasticityof demand (for quantityqand pricep):=dqdppq•Thefirst derivativeof functionf(x) with respect toxis denoted byf0(x).•Product rulefor differentiation:y=f(x)g(x)⇒y0=f0(x)g(x) +f(x)g0(x)•Quotient rulefor differentiation:y=f(x)g(x)⇒y0=f0(x)g(x)-f(x)g0(x)(g(x))2•Chain rulefor differentiation:y=f(g(x))⇒y0=f0(g(x))g0(x)•Linear approximationof functionf(x) atx=a:f(x)≈f(a) +f0(a)(x-a)•Quadratic approximationof functionf(x) atx=a:f(x)≈f(a) +f0(a)(x-a) +12f00(a)(x-a)2Page ii of ii