 # quan111 2019 1 test2 sol.pdf - TERMS TEST — TEST 2...

• 11

This preview shows page 1 - 4 out of 11 pages.

TERMS TEST — TEST 2Trimester 1 - 21/May/2019QUAN111MATHEMATICS FOR ECONOMICSAND FINANCETime allowed:SIXTY MINUTESCLOSED BOOKInstructions:There are TWENTY multi-choice questions.Each question is worth ONE mark.Answer on the multichoice answer sheet provided.Permitted Materials:Onlysilentnon-programmablecalculatorsorsilent programmable calculators with memoriescleared are permitted in this examination.Page i of ii
Formulae:Linear Function:y=ax+bSolving a quadratic function:f(x) =ax2+bx+c= 0 =x=-b±b2-4ac2aNatural exponential function:y=Aex, wheree= 2.7182818284. . .Natural logarithmic function:y= lnxIfA, Bare two sets, thenTheunionofAandBis denoted byAB.TheintersectionofAandBis denoted byAB.ThedifferenceofAfromBis denoted byA\B.IfAis asubsetofB, then it is denoted byAB.Theinner productof two vectorsxandyis denoted by (x·y)Thelength(ornorm) of vectorxis denoted bykxk.Solving aquadratic function:f(x) =ax2+bx+c= 0x=-b±b2-4ac2aElasticityof demand (for quantityqand pricep):=dqdppqThefirst derivativeof functionf(x) with respect toxis denoted byf0(x).Product rulefor differentiation:y=f(x)g(x)y0=f0(x)g(x) +f(x)g0(x)Quotient rulefor differentiation:y=f(x)g(x)y0=f0(x)g(x)-f(x)g0(x)(g(x))2Chain rulefor differentiation:y=f(g(x))y0=f0(g(x))g0(x)Linear approximationof functionf(x) atx=a:f(x)f(a) +f0(a)(x-a)Quadratic approximationof functionf(x) atx=a:f(x)f(a) +f0(a)(x-a) +12f00(a)(x-a)2Page ii of ii
QUAN111TEST 221/May/2019

Course Hero member to access this document

Course Hero member to access this document

End of preview. Want to read all 11 pages?

Course Hero member to access this document

Term
Three
Professor
N/A
Tags
• • • 