final_formula

# final_formula - ECE311 Potentially Useful Formulas Fall...

• Notes
• 9

This preview shows pages 1–4. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

This preview has intentionally blurred sections. Sign up to view the full version.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECE311 Potentially Useful Formulas - Fall 2007 A. Simple Integrals integraldisplay dx √ x 2 + c 2 = ln parenleftBig x + radicalbig x 2 + c 2 parenrightBig integraldisplay dx x 2 + c 2 = 1 c tan − 1 x c integraldisplay dx ( x 2 + c 2 ) 3 / 2 = 1 c 2 x √ x 2 + c 2 integraldisplay xdx √ x 2 + c 2 = radicalbig x 2 + c 2 integraldisplay xdx x 2 + c 2 = 1 2 ln ( x 2 + c 2 ) integraldisplay xdx ( x 2 + c 2 ) 3 / 2 = − 1 √ x 2 + c 2 integraldisplay dx ( a + bx ) 2 = − 1 b ( a + bx ) B. Coordinate Transformations Cartesian to Cylindrical : hatwide a x hatwide a y hatwide a z hatwide a ρ cos φ sin φ hatwide a φ − sin φ cos φ hatwide a z 1 Cartesian to Spherical : hatwide a x hatwide a y hatwide a z hatwide a r sin θ cos φ sin θ sin φ cos θ hatwide a θ cos θ cos φ cos θ sin φ − sin θ hatwide a φ − sin φ cos φ Cylindrical to Spherical : hatwide a ρ hatwide a φ hatwide a z hatwide a r sin θ cos θ hatwide a θ cos θ − sin θ hatwide a φ 1 1 Cartesian Cylindrical Spherical x = ρ cos φ = r sin θ cos φ y = ρ sin φ = r sin θ sin φ z = z = r cos θ Cylindrical Cartesian Spherical ρ = radicalbig x 2 + y 2 = r sin θ φ = arctan( y/x ) = φ z = z = r cos θ Spherical Cartesian Cylindrical r = radicalbig x 2 + y 2 + z 2 = radicalbig ρ 2 + z 2 θ = arctan( radicalbig x 2 + y 2 /z ) = arctan( ρ/z ) φ = arctan( y/x ) = φ C. Differential elements in several coordinate systems Cartesian coordinates ¯ dl = ¯ a x dx + ¯ a y dy + ¯ a z dz ds x = dydz ds y = dxdz ds z = dxdy dv = dxdydz Cylindrical coordinates ¯ dl = ¯ a ρ dρ + ¯ a φ ρdφ + ¯ a z dz ds ρ = ρdφdz ds φ = dρdz ds z = ρdρdφ dv = ρdρdφdz Spherical coordinates ¯ dl = ¯ a r dr + ¯ a θ rdθ + ¯ a φ r sin θdφ ds r = r 2 sin θdθdφ ds θ = r sin θdrdφ ds φ = rdrdθ dv = r 2 sin θdrdθdφ 2 D. Grad, Div, Curl and Laplacian 1. Cartesian ( x,y,z ) ∇ Φ = ¯ a x ∂ Φ ∂x + ¯ a y ∂ Φ ∂y + ¯ a z ∂ Φ ∂z ∇ · ¯ A = ∂A x ∂x + ∂A y ∂y + ∂A z ∂z ∇ × ¯ A = ¯ a x parenleftbigg ∂A z ∂y − ∂A y ∂z parenrightbigg + ¯ a y parenleftbigg ∂A x ∂z − ∂A z ∂x parenrightbigg + ¯ a z parenleftbigg ∂A y ∂x − ∂A x ∂y parenrightbigg ∇ 2 Φ = ∂ 2 Φ ∂x 2 + ∂ 2 Φ ∂y 2 + ∂ 2 Φ ∂z 2 2. Cylindrical ( ρ,φ,z ) ∇ Φ = ¯ a ρ ∂ Φ ∂ρ + ¯ a φ 1 ρ ∂ Φ ∂φ + ¯ a z ∂ Φ ∂z ∇ · ¯ A = 1 ρ ∂ ∂ρ ( ρA ρ ) + 1 ρ ∂A φ ∂φ + ∂A z ∂z ∇ × ¯ A = ¯ a ρ bracketleftbigg 1 ρ ∂A z ∂φ − ∂A φ ∂z bracketrightbigg + ¯ a φ bracketleftbigg ∂A ρ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern