w9-C - Math 20C Multivariable Calculus Lecture 22 1 Slide 1...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Math 20C Multivariable Calculus Lecture 22 1 Slide 1 & $ % Triple integrals On rectangular boxes. (Sec. 15.7) On simple domains, type I, II, and III. On arbitrary domains. Slide 2 & $ % Recall the Riemann sums and their limits Single variable functions: lim n n X i =0 f ( x * i ) x = Z x 1 x f ( x ) dx. Two variable functions: lim n n X i =0 n X j =0 f ( x * i , y * j ) x y = Z x 1 x Z y 1 y f ( x, y ) dxdy. Three variable functions: lim n n X i =0 n X j =0 n X k =0 f ( x * i , y * j , z * k ) x y z = Z x 1 x Z y 1 y Z z 1 z f ( x, yz ) dxdydz. Math 20C Multivariable Calculus Lecture 22 2 Slide 3 & $ % Integrals in a rectangular box domain Theorem 1 Let f ( x, y, z ) be a continuous function on a rectangular boxed domain R = [ x , x 1 ] [ y , y 1 ] [ z , z 1 ] . Then, Z Z Z R f dV = Z x 1 x Z y 1 y Z z 1 z f ( x, y, z ) dzdydx. Furthermore, the integral does not change when performed in different order. Slide 4 & $ % Compute the integral of f ( x, y, z ) = xyz 2 on the domain R = [0 , 1] [0 , 2] [0 , 3] R = { ( x, y, z ) R 3 : 0 6 x 6 1 , 6 y 6 2 , 6 z 6 3 } . 1 2 y x 3 z Math 20C Multivariable Calculus Lecture 22 3 Slide 5 & $ % Notice the order of the integrations Z Z Z R f dV = Z 1 Z 2 Z 3 xyz 2 dzdydx, = Z 1 Z 2 xy 1 3 z 3 3 dydx, = 27 3 Z 1 Z 2 xy dydx, = 9 Z 1 x 1 2 y 2 2 dx, = 18 Z 1 xdx, = 9 . Slide 6 & $ % Triple integrals on simple regions Type I, means arbitrary shape only on the x variable. Type II means arbitrary shape only on the y variable. Type III means arbitrary shape only on the z variable. Math 20C Multivariable Calculus Lecture 22 4 Slide 7 & $ % For example, consider an integral type III Theorem 2 Let g ( x, y ) 6 g 1 ( x, y ) be two continuous functions defined on a domain [ x , x 1 ] [ y , y 1 ] . Let f ( x, y, z ) be a continuous function in D = 8 > > < > > : (...
View Full Document

Page1 / 14

w9-C - Math 20C Multivariable Calculus Lecture 22 1 Slide 1...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online