Energy Transport in Electromagnetic Plane Wave
Fields:
E
y
(
x, t
) =
E
max
sin(
kx
-
ωt
)
,
B
z
(
x, t
) =
B
max
sin(
kx
-
ωt
)
.
Energy density:
u
(
x, t
) =
1
2
0
E
2
y
(
x, t
) +
1
2
μ
0
B
2
z
(
x, t
)
.
[J/m
3
]
Use the amplitude relations
0
E
2
max
=
0
c
2
B
2
max
=
1
μ
0
B
2
max
.
u
(
x, t
) =
0
E
2
max
sin
2
(
kx
-
ωt
) =
1
μ
0
B
2
max
sin
2
(
kx
-
ωt
) =
E
max
B
max
cμ
0
sin
2
(
kx
-
ωt
)
.
Energy transported across area
A
in time
dt
:
dU
(
x, t
) =
u
(
x, t
)
Acdt.
[J]
Power transported per unit area:

This is the end of the preview.
Sign up
to
access the rest of the document.
- Spring '07
- AndrevanTonder
- Energy, Light, Fundamental physics concepts, Emax, kx − ωt, Emax Bmax Bmax
-
Click to edit the document details