tsl301 - Z E max I max = s R 2 + L-1 C 2 Current amplitude...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
RLC Series Circuit (1) Applied alternating voltage: E = E max cos ωt Resulting alternating current: I = I max cos( ωt - δ ) Goals: Find I max , δ for given E max , ω . Find voltages V R , V L , V C across devices. Loop rule: E - V R - V C - V L = 0 Note: All voltages are time-dependent. In general, all voltages have a different phase. V R has the same phase as I . ~ A V V V R C L ε V V V R C L I tsl301 – p.1/3
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
RLC Series Circuit (2) Phasor diagram (for ωt = δ ): I V V V V R C L C V - L ε δ Voltage amplitudes: V R,max = I max X R = I max R V L,max = I max X L = I max ωL V C,max = I max X C = I max ωC Relation between E max and I max from geometry: E 2 max = V 2 R,max + ( V L,max - V C,max ) 2 = I 2 max " R 2 + ωL - 1 ωC « 2 # tsl302 – p.2/3
Background image of page 2
RLC Series Circuit (3) Impedance:
Background image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Z E max I max = s R 2 + L-1 C 2 Current amplitude and phase angle: I max = E max Z = E max q R 2 + ` L-1 C 2 tan = V L,max-V C,max V R,max = L-1 /C R Voltages across devices: V R = RI = RI max cos( t- ) = V R,max cos( t- ) V L = L dI dt =-LI max sin( t- ) = V L,max cos t- + 2 V C = 1 C Z Idt = I max C sin( t- ) = V C,max cos t-- 2 I V V V V R C L C V-L tsl303 p.3/3...
View Full Document

Page1 / 3

tsl301 - Z E max I max = s R 2 + L-1 C 2 Current amplitude...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online