{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

MoedA_2006_A - ".36113221 3 Mathematical Handbook...

Info icon This preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: - 19/02/2006 : " : : .36113221 : ' : ' : ' :' : 3 : : : Mathematical Handbook . 1 .2 : (10%) ' : , 5 ' 2 : 1 ' -1 : 2 .' 0 : 3 : 1- I : 4-II . : . : SNR- FM deemphasis .I deemphasis .1 deemphasis .2 deemphasis .3 deemphasis .4 .5 Phase-Shift Modulator SSB .II Hz 20 .1 1 .2 Hz300-5000 : .3 1KHz sinc .4 .5 2 : .III 10 cos(20t ) cos(8000t ) + 10 sin(20t ) sin(8000t ) : 10 cos(20t ) .1 10 sin(20t ) .2 10 cos(20t ) + 10 sin(20t ) .3 10 .4 .5 f m = 4.5 kHz .IV ( Polar NRZ ) 8PSK , ( N Q ) Quantizer - N Q Bch = 18 kHz N Q = 4 .1 NQ = 8 N Q = 16 NQ = 6 .2 .3 .4 .5 BPSK : Polar NRZ s d (t ) Polar RZ s d (t ) Unipolar NRZ s d (t ) Raised Cosine signal s d (t ) .V .1 .2 .3 .4 .5 3 (90%) ' 1' (30%) : 2 cos c t Amplifier KP s M (t ) s d (t ) Transmit Filter Ak Symbol Encoder Channel k ch = -20 dB n (t ) x (t ) 1 S1 2 dk Differential Encoder bk Optimal Symbol Detector BPF x r (t ) x d (t ) MF kTS Per bit 1 Per bit 2 Decision Device A (r ) k Symbol Decoder 2 cos( c t + 0 ) th = 0 1 S2 2 Differential Decoder . , , b k (1 TS = 20 sec : . p (bk ) = 0.5 for k = 1,2 1; 0 t < TS . g (t ) = : Transmit Filter (2 0 otherwise . Ak = 1 s M (t ) = 2 Ak g (t - kTS ) cos c t k (3 0 - n (t ) (4 N 0 = 3.78 10 - 6 V2 Hz 4 ((15%) d = Er Per bit1 N0 Ts 0 2 .("1" S1, S 2 ) . E r = s r (t )dt , 0 - Per bit 2 .("2" S1, S 2 ) . Per symbol = Per bit 1 Per bit 2 - Per bit1 ((5%) . 0 = 0 - K P = 50 Per bit 2 - Per bit1 ((10%) .' . 0 = - K P = 50 .Q-function : 2 ' (40%) v m (t ) = cos(2f m t ) FM v FM (t ) vm (t ) BPF v LO2 (t ) = Ac cos(2f 2 t ) Frequency Multiplier n Frequency Modulator K FM Channel vLO1 (t ) = 2 cos(2f1t ) n(t ) Local Oscillator 2 Local Oscillator 1 Tuning v sim (t ) x (t ) RF Filter Mixer 1 IF Filter 1 Mixer 2 IF Filter 2 v LO = 2 cos(2 f 3t ) 3 Local Oscillator 4 Frequency Detector Tuning Local Oscillator 3 X d (t ) LPF 5 : 1 for f B BPF BBPF = BFM H BPF ( jf ) = (1 0 .(Carson BFM ) 1 for f B IF1 1; f B RF ; H IF1 ( jf ) = ; H RF ( jf ) = (2 0 0; otherwise 1 for f B IF 2 - B IF1 , RF - B RF H IF 2 ( jf ) = 0 . IF2 - B IF 2 , IF1 1; f f m (3 H LPF ( jf ) = 0; otherwise . f 3 > f C , v LO3 (t ) = 2 cos(2f 3t ) : Local Oscillator 3 (4 N 0 2 = 10 - 6 V2 Hz 0 - n (t ) (5 k ch = -20dB (6 x(t ) = v r (t ) + v sim (t ) + n(t ) (7 . - v sim (t ) = As cos sim t , - v r (t ) : FM (t ) , v FM (t ) = Ac cos( c t + FM (t )) : (8 : Phase of signal 2 1.5 1 0.5 FM (t) 0 -0.5 -1 -1.5 -2 0 50 100 150 200 t [ sec] 250 300 350 400 . f C = 200 250 MHz f C 6 ( (10%) Hz . n = 4 K FM f m V . v FM (t ) ( ) ((16%) (image) f IF 1 . 200 MHz - 250 MHz Frequency Detector - SNR r f IF 2 . Q IF 2 = 50 - IF2 . f sim 2 Q IF1 - IF1 f c SNR r . 200 250 MHz : ((14%) Ac (5%) . p( An > Ar ) 0.03 : Local Oscillator 1 f1max f1min (5%) f C = 200 250 MHz f 2 > nf1max - . f 2 = 300 MHz Local Oscillator 2 . SNRd LPF (4%) 3 ' (30%) : Transmitter vm( t ) Modulator v M (t ) Amplifier Kp vT ( t ) PT Channel kch = -30dB + n(t) xd ( t ) Receiver LPF Demodulator xR ( t ) BPF x( t ) 7 : max vm (t ) = 1V vm (t ) .1 . Rm ( ) = Sinc 5 103 1 f C - 2 B R f f C + 1 B R . vC (t ) f C H BPF ( jf ) = 0 otherwise ( ) .2 1 f f m . vm (t ) f m H LPF ( jf ) = 0 otherwise .3 .4 . PT = 1000 W 0 k ch = -30dB . N0 -5 W 2 = 0.5 10 Hz Gm ( f ) ( (5%) .AM ,DSB ,SSB : BPF BR , SIR ((5%) . r = r - 0 = 6 : DSB , ((5%) . r = r - 0 = 6 : SSB ( k AM = 0.5) AM ( (5%) - Ar p( An > Ar ) = 0.0025 . ! 8 Q-Function :1 9 Bessel Functions :2 ...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern