Problem set 4 -Solutions

# Problem set 4 -Solutions - 6.3 Solutions{I.1 1 24 The...

• Notes
• sjk94
• 2

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 6.3 Solutions {I .1: 1 24. The expaneien is 2 :——1 5—4 C. 15—4.: 4ﬂl EH 3:1 # A + B + e + D a 1 A B {xi—11rx1—4)_x—1 x+1 x—E x+2 5—12: «VF—'1 +ﬁ+x ‘4— 1_ I: l l #(A+B)~/§+(A—B)x xL-ﬂfx+l}(x3—4}= 2—(—3}_ 5 _ 5— 3 3 l l ______ —I—1-— I— I — — 2‘5 I 4 1 AFB=ﬂ CZIIII‘ll—z—z— 1 1 1 1 1—}! {x — 1H: + 2] 3(4) 3 dI=— + )IETI 2 fﬁ—IE 25/3 (wig—I «JE—FI ﬂ: lim ﬁ: ﬁ:—%_ 1 1—}— 111.1 —- I— [—J =—(—1I1|~/§—xl+h1]~/§+xl)+ﬂ 2‘05 Therefere l 5 =ﬁlﬂ :g+l +C. I2 l 1 —_1: —[I2_n(x2_4)dx=~—Ehl[x—ll+Elﬂ[I+ll+ x A B l l '“- mix—1+”; ih'xtz'ﬁh'xtg'tﬁ- _(A+3B}x+[3A—BJ 26. Wehave _ 3x1+3x—3 :11: ed: A+BB=1 l 3 f— I zf— Letu=x—i =':-'- =§-A=—.B=—. 1— 2 - 1 l {SA—B=ﬂ In 1D [I *IH) [ix—t11+% du=dx f xdx 2i ( l + 3)::1'3: _. udu +1 {in 3x1+3x—3 1n 3x~—l x+3 _ {1.2+}? E (“brill l 3 =—ln3 —l —1u 3 C. 3 3E! Ix |+ JI+ |+ Letu=§tanm 22. Here the expmtsienis 3 dz: = g SEC2 1: {iv in the second integral. 2 ;.; +1: A + Bx—t—C ﬂ 2 d x3+3 x+2 .x1—2x+4 1 1 1 ?SEH’” _mix?—2x+4}+B{x3+2x)+C(x+21 “5 “2+; +Ef 9 .1 —— —seev 13+E 16 ... ... =— — ease I: :—2A+23+C=ﬂ=}A=EBmE.Cm-Fga 2[IE_;.;+1) 3ﬁ 4A+2C=l _1 2 =— [ta—f—sinveequ—l—C sewe have ﬁx: _I +1} +3‘ﬁ 2 —1 + 2 m_i1.r—1+2 1—[x—EJa/i +C [I +1dx=— +— f— hf— _1"IE—I+11' 3J3 J2? +3_~./§(—2~/x1—x+1 n1 x3+3 x+2 12 I(.1I:—l)-—+—3ﬂT 2 l2I_1 x—E C ._ — =—ta.n_ +—+ :Etul:x l Jﬁ 4/? 3(x3—x—f-l} u: x 5 l T 3 =—1111;..:+;:|+E ”Jr in 12 H1+3 4H3 1'? + in =—1n 2 —1n 1—2:: 4 12 11+ |+24 (I +) 1 —l «.5 +—ta.n_lx +5: Mi J3 ' Fig. 3.25 6.5 Solutions '5'" l 2. f —a'.1: Leta=2x—1 lit—1333 3 I: a) du=2dx DD (3' E —f —H =1 lim H_2ﬂa'a 2 5 HEIE fut—me 5 E :0: (diverges) 5 ‘1 d1 _ C ah: ti. = 11n1 ﬂ I122 --I1 C—m— g. a3 "-II n— n— 1 = — lirn Jam 2 fit—me The integral diverges tn inﬁnity. DD 11]. f aa—I iii: a R =: lim Ste—x if; R—EDCI a. U2): dV=e_‘dx dU=dx V:—e_r R E ljrn (—Jre_Jr + f a”[ tilt) R—rm G I] l' R 1 —|- l l =: 1111 —-— -— — =: . R—mu e3 a3 The integral eenvergea. H 5" d1 [15. f Let n! =-. 111.1: I? .xﬂnx} a: d1: = —I .1" [HR if lnﬂ : lin1 _" = lirn 111M R—pnn ] H R—snn l r: lirn ln(1nR)—ln1== GD. R—rm Thisr integral diverges te- inﬁnity. I]! 31]. Since 5 — far all J: 13 ﬂ, therefnre x5 + l 3 an it I:f I ax I] 15-1-1 I II! E. DD I1 d F_/-ﬂ15+lx+_/; 15+1I {Ifl I1 d +fﬂﬂ til I — — ﬂ. IS—l—l i I3 : I] +I1. Since I1 is a proper integral (ﬁnite) and I; is a eenvergent impreper integral, {see Theereni 2), therefere I eenvergea. ...
View Full Document

• Spring '07
• DAVIS,F

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern