aula_20 - Teoria dos Grafos Aula 20 Aulapassada...

Info icon This preview shows pages 1–7. Sign up to view the full content.

View Full Document Right Arrow Icon
Figueiredo – 2011 Teoria dos Grafos Aula 20 Aula passada Escalonando tarefas  no tempo ( interval  scheduling ) com  pesos Programa çã Din â mica Aula de hoje Problema da soma  do subconjunto  ( subset sum ) Programa çã din â mica Problema da mochila
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Figueiredo – 2011 Escalonamento de Tarefas Tarefas possuem dependência temporal 0 T 1 T 2 T 3 T 4 Estrutura do problema está mais explícita Tarefas que colidem no tempo não podem ser executadas juntas Fácil identificar recursão Iremos relaxar este dependência
Image of page 2
Figueiredo – 2011 Escalonamento de Tarefas N tarefas Cada tarefa leva tempo t i para executar T: tempo total disponível Objetivo : Maximizar o uso do orçamento de tempo T (minimizar a sobra) número de tarefas não interessa Problema : Quais tarefas executar?
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Figueiredo – 2011 Investimentos N investimentos possíveis Cada investimento tem preço p i W: orçamento disponível Objetivo : Maximizar os investimentos dentro do orçamento (minimizar sobra) Problema : Quais investimentos fazer?
Image of page 4
Figueiredo – 2011 Problema da Soma de Subconjunto Abstração destes problemas (e muitos outros) Subset Sum Problem Dado um conjunto de N objetos, cada um com peso inteiro w i , e um limite W Solução : subconjuto de objetos tal que soma dos pesos seja menor (ou igual) a W Problema : Determinar subconjunto que leva a maior soma
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Figueiredo – 2011 Problema da Soma de Subconjunto Exemplo N = {1, 2, 3, 4, 5, 6} w 1 = 2, w 2 = 7, w 3 = 11, w 4 = 3, w 5 = 2, w 6 = 4 W= 10 Subconjunto ótimo: O = {2, 4} custo de O = w2 + w4 = 10 Solução é sempre única?
Image of page 6
Image of page 7
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern