Rules of Replacement 1

Rules of Replacement 1 - now simplify Which part should we...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
Natural Deduction Natural Deduction 7.3 © 2006 Kevin J. Browne
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Rules of Replacement I DeMorgan’s Rule Commutativity Associativity Distribution        
Background image of page 2
DeMorgan’s Rule ~(p . q)  ::  ~p v ~q  ~(p . q)  ::  ~p v ~q  ~(p v q) ::  ~p . ~q  ~(p v q) ::  ~p . ~q 
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Commutativity  Commutativity  p p v v q q p p . . q q
Background image of page 4
Associativity  Associativity  p p v v q q v v r r p p . . q q . . r r ( ( ( ( ) ) ) )
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Distribution  Distribution  p p v v q q . . r r ( ( ) ) ) ) ( ( ) ) p p . . q q v v r r ( ( ) ) . . ) ) ( ( ) )
Background image of page 6
An Example An Example 1. J v (K . L) 2. ~K                    /J Here we seem unable to use any  of the rules of inference  immediately. Let’s try a rule of replacement…                distribution?
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
An Example An Example 1. J v (K . L) 2. ~K                    /J 3. (J v K) . (J v L)   1 dist. The advantage here is we can 
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Background image of page 10
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: now simplify! Which part should we simplify? We have a ~K in line two which is a clue! An Example An Example 1. J v (K . L) 2. ~K /J 3. (J v K) . (J v L) 1 dist. 4. J v K 3 simp. Now how can we get J out of line 4? Remember you can’t simplify a disjunction! But speaking of disjunctions there’s a DS! An Example An Example 1. J v (K . L) 2. ~K /J 3. (J v K) . (J v L) 1 dist. 4. J v K 3 simp. 5. J 2,4 DS And the code is solved!...
View Full Document

{[ snackBarMessage ]}

Page1 / 10

Rules of Replacement 1 - now simplify Which part should we...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online