210CML1 - Show each step as in the example. Example: y = -...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Math 210 CML #1 Winter 2007 For #1- #7 convert from set builder notation to interval notation 1) {x : x > 3} 5) {x : 1 > x ≥ - 2 or x > 7 } 2) {x : x is a real number } 6) {x : -1 ≤ x < 8 } 3) {x : x ≠ 4 } 7) {x : -1 ≤ x or x < -10.2 } 4) {x : x ≥ 5 or x < -2 } For #8 - #14, convert from interval notation to set builder notation 8) ) 6 , 3 [ - 12) ) , 1 ( ) 1 , ( -∞ 9) ] 5 , ( -∞ 13) (1,2) 10) ) 0 , ( ) , 4 [ -∞ 14) ) , 3 ( - 11) ) , ( -∞ For #15 - #20, solve the quadratic inequality. Give your solution set in interval notation. 15) x 2 – 3x + 5 < 4 18) 3x 2 + 2x < -1 16) 2x 2 – 2 ≥ 0 19) -x 2 ≤ 2x + 4 17) x 2 > 3 20) x 2 + 4x > 5 For #21 - # 28, give equations of all vertical and horizontal asymptotes on the graph of the function. 21) 15 8 3 ) ( 2 + + + = x x x x f 25) x x x f 5 4 3 ) ( - = 22) 7 5 2 ) ( 2 2 + + = x x x x f 26) 3 5 12 2 ) ( 4 - - + - = x x x x g 23) 2 4 3 ) ( 3 + - = x x x x g 27) 10 5 1 ) ( 2 - = x x f 24) 2 2 4 4 7 2 ) ( x x x x x h - - - = 28) 2 3 1 ) ( 2 4 - - - = x x x x h
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
For #29 - #35, graph using transformations.
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Show each step as in the example. Example: y = - (x-2) 3 + 4 (See me for example) 29) y = ( -x + 2) 2 – 1 33) y = -sin(2x) 30) y = 1 3 2 +-x 34 ) y = 1 5 3 +-x 31) y = -2 3--x 35) 1 ) 3 ( 1 2 + + = x y 32) y = x 2 – 6x + 10 [HINT: complete the square to get into vertex form y = a(x-h) 2 +k ] For #36 - #39, use the function f below f(x) = 1 if x < -5 36) Graph f accurately x + 2 if -5 ≤ x ≤ 1 37) Evaluate f(-5), f(0), f(-10), and f(1) x 2 if x > 1 38) Find the domain of f 39) Find the range of f For #40 - #43 , use the function h below h(x) = -x if x < 0 40) Graph h accurately x if 0 ≤ x < 4 41) Evaluate h(0), h(-2), h(5), h(7), and h( 3 2 ) 3 2-x if 6 >x ≥ 4 42) Find the domain of h 43) Find the range of h...
View Full Document

This note was uploaded on 05/04/2008 for the course MATH 210 taught by Professor Volkerding during the Winter '07 term at University of Missouri-Kansas City .

Page1 / 2

210CML1 - Show each step as in the example. Example: y = -...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online