高数(上)04A - 2003-2004 1 A 2 20 1 2 x y 3 4 x 0 5 6...

Info icon This preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
课程考试试题 学期 学年 拟题人 : 校对人 : 拟题学院(系) : : 2003-2004 1 等数学(上)( A 数理系 王天顺 全校本、专科 王天顺 (答案写在答题纸上,写在试题纸上无效) 一、填空题:(每小题 2 分,共 20 分) 1 .一切初等函数在其 内都是连续的。 2 .若 y x , 满足方程 x y y x arctan ln 2 2 ,则 dy 3 .已知 ) 100 ( ) 2 )( 1 ( ) ( x x x x x f ,则 ) 0 ( f 4 .当 0 x 时, x x x f sin ) ( 3 x 阶无穷小。 5 .已知 C x x dx x f 2 1 ) ( ,则 dx x f x ) (cos sin 6 dx x 3 1 2 7 .若 ) ( x f a a , 上连续且为奇函数,则 a a dx x f ) ( 8 .曲线 x y 2 2 x y 所围成的平面图形的面积是 9 . 已 知 向 量 ) 1 , 2 , 1 ( ), 1 , 1 , 2 ( b a , 单 位 向 量 e 同 时 垂 直 于 a b , 则 e = 10 .通过点 ) 5 , 0 , 3 ( 0 M 与坐标原点的直线的对称式方程为 二、选择题:(每小题 2 分,共 20 分) 1 .下列极限存在的是:( ) A 2 ) 1 ( lim x x x x ) B 1 2 1 lim 0 x x ) C x x e 1 0 lim ) D x x x 1 lim 2  2 . 设 0 ), ( 0 , cos 1 ) ( 2 x x g x x x x x f , 其 中 ) ( x g 是 有 界 函 数 , 则 ) ( x
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern