高数(上)C-10A - 20092010 CA 5 3 15 1 1 y x 1 x 2 x e...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
课程考试试题 学期 学年 拟题人 : 校对人 : 拟题学院(系) : : 2009—2010 高等数学 C (上) A 数理学院 陈瑞欣 营专、通专等专业 苏鸿雁 (答案写在答题纸上,写在试题纸上无效) 一、 填空题(本题共 5 个小题,每小题 3 分,共 15 分) 1 、函数 2 1 1 x x y 的定义域是 2 、设函数 0 , 0 , ) ( x x a x e x f x ) , (  内连续,则 a . 3  1 ) 1 2 3 2 ( lim x x x x 4 、设 ) ( x f 在点 x 处可导,则 ) ( ) ( h x f x f . 5 dt t dx d x x 2 sin 二、 选择题(本题共 5 个小题,每小题 3 分,共 15 分) 1 、下列说法正确的是( A )零是无穷小量 B )无穷小量是零 C )无穷小量是非常小的正数 D x 1 是无穷小量 2 、设 x e x f 1 ) ( ,则 0 x ) ( x f 的( A )可去间断点 B )无穷间断点 C )跳跃间断点 D )连续点 3 、设 x 1 ) ( x f 的一个原函数,则 ) ( ' x f 为( A x ln B 2 1 x C 3 2 x D 3 1 x 4 、设 x e y x 2 sin 3 1 ,则 dy 为( A dx e x x x 3 1 ) 2 sin 3 2 cos 2 ( B dx e x x x 3 1 ) 2 sin 2 2 cos 3 ( 1
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
C dx e x x x 3 1 ) 2 sin 2 2 cos 3 ( D dx e x x x 3 1 ) 2 sin 3 2 cos 2 ( 5 、下列积分不是反常积分的是( A dx x 1 2 1 1 B 1 1 2 1 1 dx x C 2 2 2 2 1 dx x D 1 1 2 2 1 dx x 三、计算题(共 55 分) 1 、求下列极限(每小题
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern