高数(上)A-10A - 2009-2010 1 AA 3 15 1 x 0(1 ax 1 2 3...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
课程考试试题 学期 学年 拟题人 : 校对人 : 拟题学院(系) : : 2009-2010 1 等数学 A (上) A 数理学院 张新丽 孙绍权 全校相关专业 赵立宽 (答案写在答题纸上,写在试题纸上无效) 一、填空题(每小题 3 分,共 15 分) 1 0 x 时, 1 ) 1 ( 3 1 2 ax 1 cos x 是等价无穷小,则 _ __________ a 2 .设由方程 2 2 xy 所确定的隐函数为 ) ( x y y ,则 __________ dy 3 .已知 2 ( ) f x dx x C ,则 2 (1 ) xf x dx 4 2 0 2 4 dx x 5 .微分方程 2 0 y y y  的通解为 二、选择题(每小题 3 分,共 15 分) 1 .下列极限存在的是:( ) A 2 ) 1 ( lim x x x x ) B 1 2 1 lim 0 x x ) C x x e 1 0 lim ) D x x x 1 lim 2  2. ( ) f x . 2 (0) . (0) . (0) . 2 (0) A f B f C f D f 3 .一阶线性微分方程 sin dy y x dx x x 的通解是( )。 ( ) A 1 ( cos ) y C x x ( ) B 1 ( cos ) y C x x ( ) C 1 ( sin ) y C x x ( ) D 1 ( sin ) y C x x . 4 .设 x t dt te x F 0 2 ) ( ,则 ) ( x F ) A 有极小值 0 ) B 有极大值 0 ) C 没有极值 ) D 有极小值 -1 5 .若 ( ) F x ) ( x f 的一个原函数,则 ( ) xf x dx ) A ( ) ( ) xf x F x C ) B ( ) ( ) xf x F x C ) C ( ) ( ) xf x f x C ) D ( ) ( ) f x F x C 三、计算题(共 28 分)
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
1 ) 1 1 ln 1 ( lim 1 x x x 7 分) 2 .函数 0 ( ) 0 x e x f x a bx x 0 x 处可导,求 , a b 的值( 7 分) 3 .求参数方程 t y t x arctan 2 ) 1 ln( 2 所确定的函数 ( ) y y x 的二阶导数。( 7 分) 4 .求不定积分 xdx x arctan 7 分) 四、计算题(共 22 分) 1 .求定积分 4 0 1 dx x x 6 分) 2 .列表求函数 3 2 3 1 y x x
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern