Analysis of the Harmonic Oscillator without Forcing

# Analysis of the Harmonic Oscillator without Forcing -...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Analysis of t he H ar monic Oscillat or wit hout For cing K evin Br ent Akshaya Annavajhala y' = v The H ar monic Oscillat or y'= v mv '+ ( y 2 - )v + ky = 0 mv '+ bv + ky = 0 y = posit ion v = velocit y m = mass =2 b = damping coefficient k = spr ing const ant /r est or at ive for ce =5 = second or der damping coeff. y'= v mv '+ b | v | v + ky = 0 =2 Undamped H ar monic Oscillat or y'= v 2v '+ 5 y = 0 Per iodic solut ions T = 3.97 Applicat ions: mass on spr ing or L -C cir cuit wit h no ener gy loss due t o r esist ance (mass on ice...). Obviously, not accur at e physical model. (cont inued) 0 1 A = 5 - 0 2 Tr = 0 => cent er y(0) = 6, v(0) = 0 L inear ly-Damped H ar monic Oscillat or y'= v 2v '+ 2v + 5 y = 0 Per iodic solut ions, but M at lab cannot find t he per iod (do not t r ust M at lab). Analyt ically, per iod T = 4.19 Applicat ions: M any r eal-wor ld uses: mass on spr ing or L -C cir cuit wher e fr ict ion/r esist ance r educes t ot al ener gy E in t he syst em. (cont inued) A 0 = 5 - 2 1 -1 Tr = -1, Det = 5/2 => Spir al Sink y(0) = 6, v(0) = 0 H ar monic Oscillat or wit h NonL inear Damping y'= v 2v '+ 2 | v | v + 5 y = 0 Per iodic solut ions (not sinusoidal!) wit h T = 3.97, once again obt ained analyt ically, r at her t han using M at lab Applicat ions: Dr ag on air plane t ir es landing on r unway cover ed wit h slush or wat er (cont inued) J (0,0) = 1 0 -5 -2v 2 0 1 = 5 - 0 2 => cent er ?? Appr ox!! y(0) = 8, v(0) = 0 H ar monic Oscillat or wit h SecondOr der Damping y'= v mv '+ ( y - )v + ky = 0 2 Per iodic solut ions again (once again not sinusoidal), wit h per iod T = 4.19 Applicat ions: an L -C cir cuit wit h a per iodically fluct uat ing volt age input and ener gy loss due t o r esist ance. The r esist ance dampens t he volt age t hr ough t he capacit or t o a per iodic limit ing funct ion. (cont inued) J 1 0 = -k - 2vy - y 2 m m 0 1 = 5 3 - 2 2 => Tr =3/2, Det = 5/2 y(0) = 0, v(0) = 2 y(0) = 0, v(0) = 10 ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online