# 11formulas - Math/Stat 423/523 Section 11.1 Chapter 11...

This preview shows pages 1–4. Sign up to view the full content.

Math/Stat 423/523 Chapter 11 Formulas Set Section 11.1 Two-Factor ANOVA with No Replications Notation A = 1 st factor, I = number of levels of A B = 2 nd factor, J = number of levels of B X ij = the measurement from the combination of the i th level of A and j th level of B x ij = actual (observed) value of X ij Two-Way Additive Fixed Model Model equation and assumptions are X ij = μ + α i + β j + ij where 0 , 0 J 1 j j I 1 i i = = = β = α , and ij 's are iid N(0, σ 2 ). The average response at the level i of A and level j of B is μ ij = E(X ij ) = μ + α i + β j . -------------------------------------------------------------------------------------- Parameter Estimates Factor A, level i total and average : J x x , x x . i . i J 1 j ij . i = = = Factor B, level j total and average : I x x , x x j . j . I 1 i ij j . = = = , Grand Average : IJ x x I 1 i J 1 j ij .. ∑ ∑ = = = Parameter Estimate μ .. x ˆ = μ α i .. . i i x x ˆ - = α β j .. j . j x x ˆ - = β ij = μ ˆ + i ˆ α + j ˆ β is the predicted or fitted value . e ij = x ij - ij is a residual which estimates ij . Chapter 11 Formulas 1 A B

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Hypothesis Tests Factor A: H 0 : α 1 = α 2 = . .. = α I = 0 vs. H a : at least one α i 0 Factor B: H 0 : β 1 = β 2 = . .. = β J = 0 vs. H a : at least one β j 0 Sums of Squares df ( 29 ∑ ∑ ∑ ∑ = = = = - = - = I 1 i 2 .. J 1 j 2 ij I 1 i J 1 j 2 .. ij IJ x x x x SST IJ-1 ( 29 IJ x x J 1 x x J SSA 2 .. I 1 i 2 . i I 1 i 2 .. . i - = - = = = I-1 ( 29 IJ x x I 1 x x I SSB 2 .. J 1 j 2 j . J 1 j 2 .. j . - = - = = = J-1 ( 29 ∑ ∑ = = + - - = I 1 i J 1 j 2 .. j . . i ij x x x x SSE (I-1)(J-1) ANOVA Table Source df SS MS F P-value Factor A I-1 SSA 1 I SSA MSA - = MSE MSA F = ( 29 F F P ) 1 J )( 1 I ( , 1 I - - - Factor B J-1 SSB 1 J SSB MSB - = MSE MSB F = ( 29 F F P ) 1 J )( 1 I ( , 1 J - - - Error (I-1)(J-1) SSE ) 1 J )( 1 I ( SSE MSE - - = Total IJ-1 SST ∑ ∑ = = = I 1 i J 1 j 2 ij e SSE , SSE = SST - SSA – SSB = = β - + σ = α - + σ = σ = J 1 j 2 j 2 I 1 i 2 i 2 2 1 J I ) MSB ( E , 1 I J ) MSA ( E , ) MSE ( E Factor A: RR = {F=MSA/MSE > F α ,I-1,(I-1)(J-1) } Factor B: RR = {F=MSB/MSE > F α ,J-1,(I-1)(J-1) } ------------------------------------------------------------------------------------- T Method for Significant Differences Compute s comparison B factor for I MSE Q w s comparison A factor for J MSE Q w ) 1 J )( 1 I ( , J , B ) 1 J )( 1 I ( , I , A - - α - - α = = . Apply w A to . I . 2 . 1 x ,..., x , x or w B to J . 2 . 1 . x ,..., x , x Block designs : ANOVA, T Method the same as above with Factor A = Blocks. Chapter 11 Formulas 2 C D
Two-Way Additive Random Model: X ij = μ + A i + B j + ij where the A i 's are iid N(0, σ A 2 ), the B j 's are iid N(0, σ B 2 ), and ij 's are iid N(0, σ 2 ). 2

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## 11formulas - Math/Stat 423/523 Section 11.1 Chapter 11...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online