This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: ”‘ Math 213 Section 111 Name: y , ____ Winter Quarter 2005 I Student ID: _ .——h—— Quiz 1 _
18 2005 ' Score: ‘75—— Tuesday, Jan. b1
3] and that F is an ~ 0
(6 points) Suppose that f' is a continuous function on [— —2
F( ) .1 1, ﬁnd 17(3). )(tb antiderwative of f. If the éjgraphi of f is given below and Show your work! [2 i ;
F (11% F (a) 1:(—«ao= I 118%?
m 3
2/9”! ”(15/ \ F (’67 = «food/x "‘71 F8)"
__ ~31
‘1 311500011 = W33 Math 213 Section 111 Name: 5 O LU 3 \ OF} S
Winter Quarter 2005 Student ID: Quiz 1 Tuesday, J an. 18 2005 ; ‘ Score: 1. (6 points) Suppose that f is h continuous function on [—2, 3] and that F is an
antiderivative of f. If tﬂle graph of f is given below and F(—2) = 1, ﬁnd F(3.) Show your work! . H" 3F :1) 1 1 7&—
me‘ 9m» gawk W) we. Rem: *1: Raﬁ'1 . Math 213 Section 111 1 3 Name: :23”, .L' :31 Winter Quarter 2005 ' ‘ Student ID: _ I" Quiz 2 Tuesday, J . 25 2005 , Score: ‘9‘ X7/ 1. (5 points) Evaluate the indeﬁnite integral
i __ 1
 d . ‘________—___ﬂ______———i, ”'7‘ .5 I J}. Math 2B Section lll Name: _ ~. , ‘ _,. A A ____
Winter Quarter 2005 Student ID: _ __..
Quiz 3 é ) Tuesday, Feb. 15 2005 ' ‘ SCOI‘BJ ____m___ 1; o X z: , I , 1
0L £110 awg a ' ' i .. 4i“  ~JPx ’ $2 01.
x3+l a: (b) (5 points) Evaluate the indeﬁnite integral / , ‘ l M}: 1X32+[
\I S 221 0” JUL "‘ {WWW
X + Wad/UL," XLM ﬁg .45}, =s. 1/35.:1 Me¥yg ﬁniui *0 MW Vg ﬂaw”PO Math 2B Section 111
W'inter Quarter 2005
Quiz 4 Tuesday Feb. ‘22 2005 )(O\ . (10 points) Find the limit:
, ‘\ «f
if»?? / " 00$ 6; ‘_
M... ,_ 1475} (9 2 A“. 3/1”)?
X +0 62 ”x Name: _
Student ID: _h_ Math 2B Section 111
Winter Quarter 2005
Quiz 4 Tuesday, Feb. 22 2005 1. (10 points) Find the limit: go
HR
QM 1r COSX
‘1
X>o vi;
“>0
290
Na
3050 AX
W
$0
Q/L'VV‘ COSX :
2‘ H (3)0 Name: SOLUT\ OMS Student ID:
Score:
, 1 —— cos x
11m ————‘—
z—)U 3:2 axqqmln wz Lara. 9— '50" wt Mﬁ‘m\wf O 1 W OWL mmkf’ixm Math 213 Section 111
Winter Quarter 2005
Quiz 5 Tuesday, March 1 2005 ,)/ g 1. (10 points) Evaluate M = fanx
W3: .——_ Name: :1 Jump, ‘
Student ID: Score: ES /~taJn3 a: sec 22 d3. Y‘K ' y
I L.
)1.
j 71 W4 ’3' ”WW [ﬁx
a .. \
$4 1‘ >\ f Séix 472W 4* 3":ch Lamx ﬁx: Name: _ Math 213 Section 111
Student ID: __ ' Winter Quarter 2005 Quiz 6 .\3
Tuesday: March 8 2005 Score: Determine Whether the integral )( 1. [ll] points)
V j 6—3 dm
4 is convergent or diverge nt. In the case that it is convergent, evaluate it. t Name: M Math 213 Section 111
Student ID: Winter Quarter 2005
Quiz 6
Tuesday, March 8 2005 Score: 1. [10 points) Determine Whether the integral 00
f e"? da:
4 is convergent or divergent. In the case that it is convergent, evaluate it_
t Mr 'VZ’X
09
Eeﬁd QM get; Lu“ 0““ "V20”
X =' x: ,.
JCm ~—er7(
‘* 4
‘t
J‘,
{M M‘s Wm Se 10M L'E‘ﬂ—ir).
q
31 —._>S
SE 1C)” =’3\Cl+C
t x t t
‘1 1— ﬁ" _: Cl ~75!
M e at K >= 7 a
L; 4 e u" Math 2B Name (please print): _ A _ 3.1.“ _ Winter 2005 Student ID: _ __
MIDTERM ‘ m ,nl. Friday, February 4 2005 Signature: Please Show your work! A/\% 1. (14 points) Suppose that g is the inverse of a differentiable function f and let mamW. , __
Iff(2) = 1 and m2) :3, ﬁnd h’(1). 6} 3 J El (X) t z I
(if*3 Q «C (900)
j _ (x)
,l m: 66] ' {37%) w
::) ‘0)" ‘._...L.. =>' ’[D‘ J— ‘1
W
’3
3(059 “my...” u...
.1. ._ “WNW“ “w . m.“ %’(t7= 15 (if) 2. Let R be the region bounded by y: 33+ 1, a: = 1 and y =1.
If H N “—1 (a) (6 points) Sketch the region R. Va (b) (12 points) )Find the area of the region R ‘
S (x ”17 y<> ax  guinea
O (c) (16 points) Find the volume of the solid obtained by rotating the region R «Hé my : MW
5!” M :2 . X 1
W W. 14:26am 36m \ Tf «Guile? Kata/cw = (1)2 TI— 3. Evaluate fa — $2) das. (a) (18 points) By deﬁnitiOn (i.e., as a limit of Riemann sums). C [You will need to use. 2:21:12? = ”_(_lL._”+162“.+__12 ]
! $~ ' .
n T‘ﬁ ‘ _n 0 (in
\ n[mt7(2n+ m @LWMHQ T
)(lh+3} ~§an+l36§lml ::(H+ZEH+D J
2%” mm (b)( (10 points) By using your knowledge of antiderivatives and the Fundamental ‘
Theorem of Calculus. \Q) S (37(‘3011 Swarm: F'(b)—F(a3
ahaXE 7’ .: {HQC333].— CJCOMO
3 0 3 ,./ 3
,/ :0
“:2. @ — 5317 2 Q _q= 3 a
WWW (may. ‘ 3T
1 a E Up 4. Suppose that f is a continuous function on [—5, 1] whose graph is given below. 'M/w’ (2 a} (y 5/13., (a) (14 points) If F is an antiderivative of f and F(1) z 2, ﬁnd F(—5). Show
”QT“ “' your work!‘ a 3mm : F65?  PM > (/
’5 1  a '
W
ﬂéf .==' 3 ”l 1" QCF 1 ” Ll
W‘ m m fl E i
L\ (b) (10 points) Find the average value of f on the interval [— 5 1] bird S¥(X/Ciy ME
:55"... Simon ’rb .'—;\ N La. (32>va _ * Lu 1 to "YER
£1. :1" @005 “@7‘W4“ H M'H 7.13 9.45me 55—OR (HE “\DTERH '5‘
_ 5 “‘9‘
Was: ’ mm gmmdx “4, 3’ 0Q an Mmbm1L.E.IM Q Ma? 0+ Rim/mm WW)
\/§5£5 19) B3 W3! \towx manual? of‘cwdfdwwﬂvea MHu FTC. Co W
7 cos“? mot g «3% ‘é‘I § 2* dE mm mm.
° 3 2X \/ . \Pwamr. 903 a ANRMM flu/Wham WEB/1] and $416?
'F(3)=’\ mammquf. jF‘HAPWO‘IXDAO‘F'E'CQ 1pm I 1 mad ﬁzysg Wot Frai. (w FTCIL) \gﬁ _ ‘ ' W {' \é’l“.
/ “Wm Sﬁgmkﬁxanwk gbv (9.)[2 ; 3 l _ l %cos(14rx3")+c \/§_ ‘¥mdm ma calm MW” Malawi 3% m M X=33ﬂém
3 OJA& % UM %+X:3_ [4) 1
33t1)=1\/@ 30wa £8»;me ofLa W62ﬂ. Mm ‘6 am M hung. 316 {[952 cud {3“3\=7% I Mot Ell). . *3. ‘ .
jzﬁ Fw‘d ‘d"+ €X1‘32x—r‘3. ...
View
Full Document
 Spring '05
 staff
 Math

Click to edit the document details