9789400744875-c1 - Chapter 2 The Human Respiratory System...

Info icon This preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 2 The Human Respiratory System 2.1 Introduction Beforedelvingintothecomputationalmethodsofreconstructingtherespiratorymod- els, we first discuss the respiratory system from a functional point of view. In addition, descriptions, locations, geometry, and naming conventions for the anatomical parts are discussed in order to establish a basis for decision-making when reconstructing the model. This chapter provides the fundamentals of the anatomy and physiology of the respiratory system and may be skipped if the reader has an established background in this field. The primary function of the respiratory system is gas exchange. Oxygen (which we need for our cells to function) from the external environment is transferred into our bloodstream while carbon dioxide (a waste product of cellular function) is expelled into the outside air. The billions of tissue cells in our body lie too far from the inhaled air to exchange gases directly, and instead blood circulates the oxygen to the cells. This occurs during each breath we take where oxygen first enters the nose or mouth during inhalation. The air passes through the larynx and the trachea which then splits into two bronchi. Each bronchus bifurcates into two smaller branches forming bronchial tubes. These tubes form a multitude of pathways within the lung and terminating at the end with a connection to tiny sacs called alveoli. The exchange of gases takes place at the alveoli, where oxygen (O 2 ) diffuses into the lung capillaries in exchange for carbon dioxide (CO 2 ). Exhalation begins after the gas exchange and the air containing CO 2 begins the return journey through the bronchial pathways and back out to the external environment through the nose or mouth. Secondary functions of the respiratory system include filtering, warming, and humidifying the inhaled air. This includes the vocal cords in the larynx for sound production, lungs for control (or homeostasis) of body pH levels, and the olfactory bulbs in the nose for smell. The respiratory system can be separated into regions based on function or anatomy (Fig. 2.1 ). Functionally there is the conducting zone (nose to bronchioles), which consists of the respiratory organs that form a path to conduct the inhaled air into the deep lung region. The respiratory zone (alveolar duct to alveoli) consists of the alveoli and the tiny passageways that open into them where the gas exchange takes J. Tu et al., Computational Fluid and Particle Dynamics in the Human Respiratory System, 19 Biological and Medical Physics, Biomedical Engineering, DOI 10.1007/978-94-007-4488-2_2, © Springer Science+Business Media Dordrecht 2013
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
20 2 The Human Respiratory System Fig. 2.1 Schematic of the respiratory system displayed by the upper and lower respiratory tract region place. Anatomically, the respiratory system can be divided into the upper and lower respiratory tract. The upper respiratory tract includes the organs located outside of the chest cavity (thorax) area (i.e. nose, pharynx, larynx), whereas the lower respiratory tract includes the organs located almost entirely within it (i.e. trachea, bronchi,
Image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern