col11406-lr - College Physics OpenStax College Rice...

  • Notes
  • masalaminar
  • 1271
  • 73% (11) 8 out of 11 people found this document helpful

This preview shows page 1 out of 1271 pages.

Unformatted text preview: College Physics OpenStax College Rice University 6100 Main Street MS-380 Houston, Texas 77005 To learn more about OpenStax College, visit . Individual print copies and bulk orders can be purchased through our website. © 2013 Rice University. Textbook content produced by OpenStax College is licensed under a Creative Commons Attribution 3.0 Unported License. Under this license, any user of this textbook or the textbook contents herein must provide proper attribution as follows: - - - If you redistribute this textbook in a digital format (including but not limited to EPUB, PDF, and HTML), then you must retain on every page the following attribution: “Download for free at .” If you redistribute this textbook in a print format, then you must include on every physical page the following attribution: “Download for free at .” If you redistribute part of this textbook, then you must retain in every digital format page view (including but not limited to EPUB, PDF, and HTML) and on every physical printed page the following attribution: “Download for free at .” If you use this textbook as a bibliographic reference, then you should cite it as follows: OpenStax College, College Physics. OpenStax College. 21 June 2012. < ;. For questions regarding this licensing, please contact [email protected] Trademarks The OpenStax College name, OpenStax College logo, OpenStax College book covers, Connexions name, and Connexions logo are registered trademarks of Rice University. All rights reserved. Any of the trademarks, service marks, collective marks, design rights, or similar rights that are mentioned, used, or cited in OpenStax College, Connexions, or Connexions’ sites are the property of their respective owners. ISBN-10 1938168003 ISBN-13 978-1-938168-00-0 Revision CP-1-003-DW OpenStax College OpenStax College is a non-profit organization committed to improving student access to quality learning materials. Our free textbooks are developed and peer-reviewed by educators to ensure they are readable, accurate, and meet the scope and sequence requirements of modern college courses. Through our partnerships with companies and foundations committed to reducing costs for students, OpenStax College is working to improve access to higher education for all. Connexions The technology platform supporting OpenStax College is Connexions ( ), one of the world’s first and largest openeducation projects. Connexions provides students with free online and low-cost print editions of the OpenStax College library and provides instructors with tools to customize the content so that they can have the perfect book for their course. Rice University OpenStax College and Connexions are initiatives of Rice University. As a leading research university with a distinctive commitment to undergraduate education, Rice University aspires to path-breaking research, unsurpassed teaching, and contributions to the betterment of our world. It seeks to fulfill this mission by cultivating a diverse community of learning and discovery that produces leaders across the spectrum of human endeavor. Foundation Support OpenStax College is grateful for the tremendous support of our sponsors. Without their strong engagement, the goal of free access to high-quality textbooks would remain just a dream. The William and Flora Hewlett Foundation has been making grants since 1967 to help solve social and environmental problems at home and around the world. The Foundation concentrates its resources on activities in education, the environment, global development and population, performing arts, and philanthropy, and makes grants to support disadvantaged communities in the San Francisco Bay Area. Guided by the belief that every life has equal value, the Bill & Melinda Gates Foundation works to help all people lead healthy, productive lives. In developing countries, it focuses on improving people’s health with vaccines and other life-saving tools and giving them the chance to lift themselves out of hunger and extreme poverty. In the United States, it seeks to significantly improve education so that all young people have the opportunity to reach their full potential. Based in Seattle, Washington, the foundation is led by CEO Jeff Raikes and Co-chair William H. Gates Sr., under the direction of Bill and Melinda Gates and Warren Buffett. Our mission at the Twenty Million Minds Foundation is to grow access and success by eliminating unnecessary hurdles to affordability. We support the creation, sharing, and proliferation of more effective, more affordable educational content by leveraging disruptive technologies, open educational resources, and new models for collaboration between for-profit, nonprofit, and public entities. The Maxfield Foundation supports projects with potential for high impact in science, education, sustainability, and other areas of social importance. 2 This content is available for free at 3 Table of Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction: The Nature of Science and Physics . . . . . . . . . . . Physics: An Introduction . . . . . . . . . . . . . . . . . . . . . . . . . Physical Quantities and Units . . . . . . . . . . . . . . . . . . . . . . Accuracy, Precision, and Significant Figures . . . . . . . . . . . . . . Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vectors, Scalars, and Coordinate Systems . . . . . . . . . . . . . . . Time, Velocity, and Speed . . . . . . . . . . . . . . . . . . . . . . . . Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motion Equations for Constant Acceleration in One Dimension . . . . . Problem-Solving Basics for One-Dimensional Kinematics . . . . . . . Falling Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graphical Analysis of One-Dimensional Motion . . . . . . . . . . . . . 3 Two-Dimensional Kinematics . . . . . . . . . . . . . . . . . . . . . . . Kinematics in Two Dimensions: An Introduction . . . . . . . . . . . . . Vector Addition and Subtraction: Graphical Methods . . . . . . . . . . Vector Addition and Subtraction: Analytical Methods . . . . . . . . . . Projectile Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Addition of Velocities . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Dynamics: Force and Newton's Laws of Motion . . . . . . . . . . . . Development of Force Concept . . . . . . . . . . . . . . . . . . . . . Newton’s First Law of Motion: Inertia . . . . . . . . . . . . . . . . . . Newton’s Second Law of Motion: Concept of a System . . . . . . . . . Newton’s Third Law of Motion: Symmetry in Forces . . . . . . . . . . . Normal, Tension, and Other Examples of Forces . . . . . . . . . . . . Problem-Solving Strategies . . . . . . . . . . . . . . . . . . . . . . . Further Applications of Newton’s Laws of Motion . . . . . . . . . . . . Extended Topic: The Four Basic Forces—An Introduction . . . . . . . 5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity Friction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drag Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Elasticity: Stress and Strain . . . . . . . . . . . . . . . . . . . . . . . 6 Uniform Circular Motion and Gravitation . . . . . . . . . . . . . . . . Rotation Angle and Angular Velocity . . . . . . . . . . . . . . . . . . . Centripetal Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . Centripetal Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fictitious Forces and Non-inertial Frames: The Coriolis Force . . . . . Newton’s Universal Law of Gravitation . . . . . . . . . . . . . . . . . Satellites and Kepler’s Laws: An Argument for Simplicity . . . . . . . . 7 Work, Energy, and Energy Resources . . . . . . . . . . . . . . . . . . Work: The Scientific Definition . . . . . . . . . . . . . . . . . . . . . . Kinetic Energy and the Work-Energy Theorem . . . . . . . . . . . . . Gravitational Potential Energy . . . . . . . . . . . . . . . . . . . . . . Conservative Forces and Potential Energy . . . . . . . . . . . . . . . Nonconservative Forces . . . . . . . . . . . . . . . . . . . . . . . . . Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Work, Energy, and Power in Humans . . . . . . . . . . . . . . . . . . World Energy Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Linear Momentum and Collisions . . . . . . . . . . . . . . . . . . . . Linear Momentum and Force . . . . . . . . . . . . . . . . . . . . . . Impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conservation of Momentum . . . . . . . . . . . . . . . . . . . . . . . Elastic Collisions in One Dimension . . . . . . . . . . . . . . . . . . . Inelastic Collisions in One Dimension . . . . . . . . . . . . . . . . . . Collisions of Point Masses in Two Dimensions . . . . . . . . . . . . . Introduction to Rocket Propulsion . . . . . . . . . . . . . . . . . . . . 9 Statics and Torque . . . . . . . . . . . . . . . . . . . . . . . . . . . . The First Condition for Equilibrium . . . . . . . . . . . . . . . . . . . . The Second Condition for Equilibrium . . . . . . . . . . . . . . . . . . Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Applications of Statics, Including Problem-Solving Strategies . . . . . . Simple Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Forces and Torques in Muscles and Joints . . . . . . . . . . . . . . . 10 Rotational Motion and Angular Momentum . . . . . . . . . . . . . . Angular Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . Kinematics of Rotational Motion . . . . . . . . . . . . . . . . . . . . . Dynamics of Rotational Motion: Rotational Inertia . . . . . . . . . . . . Rotational Kinetic Energy: Work and Energy Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 . 11 12 18 25 29 35 36 38 39 43 51 60 62 68 85 86 88 95 101 108 125 126 127 128 134 136 144 146 152 165 166 171 175 189 190 193 196 200 203 209 223 224 226 230 235 238 242 245 249 251 263 264 266 268 271 273 276 279 291 292 293 297 300 303 306 319 320 324 328 331 4 Angular Momentum and Its Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collisions of Extended Bodies in Two Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gyroscopic Effects: Vector Aspects of Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . 11 Fluid Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . What Is a Fluid? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Variation of Pressure with Depth in a Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pascal’s Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gauge Pressure, Absolute Pressure, and Pressure Measurement . . . . . . . . . . . . . . . . . . . . . Archimedes’ Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action . . . . . . . . . . . . . . . . . Pressures in the Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Fluid Dynamics and Its Biological and Medical Applications . . . . . . . . . . . . . . . . . . . . . . . Flow Rate and Its Relation to Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bernoulli’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Most General Applications of Bernoulli’s Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . Viscosity and Laminar Flow; Poiseuille’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Onset of Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Motion of an Object in a Viscous Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes . . . . . . . . . . . . . . . 13 Temperature, Kinetic Theory, and the Gas Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Expansion of Solids and Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Ideal Gas Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature . . . . . . . . . . . . . Phase Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Humidity, Evaporation, and Boiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Heat and Heat Transfer Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Change and Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase Change and Latent Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heat Transfer Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The First Law of Thermodynamics and Some Simple Processes . . . . . . . . . . . . . . . . . . . . . . Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency . . . . . . . . . . Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated . . . . . . . . . . . . . . . Applications of Thermodynamics: Heat Pumps and Refrigerators . . . . . . . . . . . . . . . . . . . . . Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy . . . . . . . Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation 16...
View Full Document

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern