## Linear mixed model fit by REML [ lmerMod ]## Formula: log(Views) ~ (1 | Channel)##Data: video#### REML criterion at convergence: 109.6#### Scaled residuals:##Min1QMedian3QMax## -1.3711 -0.7462 -0.14520.55742.6275#### Random effects:##GroupsNameVariance Std.Dev.##Channel(Intercept) 0.83390.9132##Residual1.86061.3640## Number of obs: 30, groups:Channel, 6#### Fixed effects:##Estimate Std. Error t value## (Intercept)4.05970.44839.055(c)sigma.alpha.hat.sq =0.9132^2sigma.hat.sq =1.3640^2lambda = sigma.alpha.hat.sq/(sigma.alpha.hat.sq+sigma.hat.sq)lambda## [1] 0.309503(d)video.ml <-lmer(log(Views) ~ (1|Channel),data=video,REML=FALSE)sigma.alpha.hat.sq =0.7956^2sigma.alpha.hat.sq## [1] 0.6329794(e)nullmod <-lm(log(Views) ~1,data=video)llrts <-as.numeric(2* (logLik(video.ml) -logLik(nullmod)))llrts# the log-likelihood-ratio test statistic## [1] 2.822395pchisq(llrts,1,lower=FALSE)# ordinary LRT p-value## [1] 0.09295759(f)2