Assignment 5 - Assignment 5 1 We will start by drawing a...

This preview shows page 1 - 8 out of 20 pages.

We have textbook solutions for you!
The document you are viewing contains questions related to this textbook.
Elementary and Intermediate Algebra
The document you are viewing contains questions related to this textbook.
Chapter 14 / Exercise 27
Elementary and Intermediate Algebra
Tussy/Gustafson
Expert Verified
Assignment 5 1. We will start by drawing a diagram of the two vectors, tail to tail, with an angle of 55 ° Using the parallelogram law of vector addition, completing the parallelogram and drawing the diagonal that represents the sum of ´ u and ´ v Finding Size of all Angles θ = 360 2 ( 55 ) 2 = 125 ° Calculating the length of the diagonal, using the cosine law, | u + v | 2 = | u | 2 + | v | 2 2 | u | v cosθ ¿ 3 2 + 5 2 2 ( 3 ) ( 5 ) cos 125 ° ¿ 51.207
We have textbook solutions for you!
The document you are viewing contains questions related to this textbook.
Elementary and Intermediate Algebra
The document you are viewing contains questions related to this textbook.
Chapter 14 / Exercise 27
Elementary and Intermediate Algebra
Tussy/Gustafson
Expert Verified
| u + v | = 51.207 ¿ 7.155 7.2 The magnitude of the resultant is approximately 7.2 units. To find the angle, we will use the sine law sin ( A ) a = sin ( B ) b = sin ( C ) c sinθ | ´ u | = sin125 ° | ´ u + ´ v | sinθ = 3sin 125 ° 7.2 sinθ = 0.3413 θ≈ 20 ° The magnitude of the resultant is approximately 7.2 units and it makes an angle 20 ° with ´ v .
2. a.
b. 3. a. ´ p q = 6 ( 2,1 ) 4 ( 1, 3 ) ¿ ( 6 × 2,6 × 1 ) + ( 4 × 1, 4 × 3 ) ¿ ( 12,6 ) + ( 4,12 ) ¿ ( 12 +(− 4 ) , 6 + 12 ) ¿ (− 16,18 ) For a point with the Cartesian coordinates (a,b) the magnitude of the resultant vector from the origin would be, ´ | u | = a 2 + b 2
¿ ( 16 ) 2 + 18 2 ¿ 580 ¿ 24.08 24.1 units Angle θ made with the Cartesian Axes, θ = tan 1 b a ¿ tan 1 ( 18 16 ) ¿ tan 1 ( 1.125 ) ¿ 48.36 °≈ 48.4 ° Since this point is in the Second Quadrant of the Cartesian system, the angle made in the standard form would be 180 48.4 ° = 131.6 ° Hence the coordinates of the point of the vector (-16,18) and the magnitude is 24.1 units. b. ´ u v = 3 ( 11,1, 2 ) 5 ( 2,4,6 ) ¿ ( 3 × 11,3 × 1,3 × 2 ) +(− 5 × 2, 5 × 4, 5 × 6 ) ¿ ( 33,3, 6 ) + ( 10, 20, 30 ) ¿ ( 33 + ( 10 ) , 3 + ( 20 ) , 6 + ( 30 ) ) ¿ ( 23, 17, 36 ) For a point with the Cartesian coordinates (a,b,c) the magnitude of the resultant vector from the origin would be, | ´ u | = a 2 + b 2 + c 2 Hence , | ´ u v | = 23 2 + ( 17 ) 2 + ( 36 ) 2
¿ 2114 ¿ 45.97 46 units Hence the coordinates of the vector are (23,-17,-36) and magnitude is 46 units. 4. a. 3 ´ x 4 ( 2 ´ x + ´ y ) + 10 ´ y ¿ 3 ´ x 8 ´ x 4 ´ y + 10 ´ y ¿ 5 ´ x + 6 ´ y b. 9 ( 2 ´ x −´ y + 3 ´ x ) 2 ( 6 ´ x 3 ´ y ) ¿ 18 ´ x 9 ´ y + 27 ´ x 12 ´ x + 6 ´ y ¿ 33 ´ x 3 ´ y c. 2 ( 4 ´ x −´ y )+ 10 ( 2 ´ x 3 ´ y )− 7 x 3 ´ y ) ¿ 8 ´ x 2 ´ y + 20 ´ x 30 ´ y 7 ´ x + 21 ´ y ¿ 21 ´ x 11 ´ y 5. The point P(x,y) represents the vector in Cartesian form. The horizontal component is the length of x and the vertical component is the length of y.
The primary trigonometric ratios of this right-angled triangle: ´ ¿ u ¿ cosθ = x ¿ ´ ¿ u ¿ sinθ = y ¿ To find the horizontal component (the length of x), we use the cosine ratio. We know the angle we are working with is 75°. We also know the length of the hypotenuse is ¿ ´ u ¿ 8 x = ¿ ´ u | cosθ ¿ 8 × cos75 ° ¿ 8 × 0.258 ¿ 2.07 2.1 To find the horizontal component (the length of y), we use the sine ratio. y = | ´ u | sinθ ¿ 8 × sin 75 ° ¿ 8 × 0.96 ¿ 7.72 7.7 Therefore, the vector in Cartesian form is ´ u =( 2.1,7.7 ) .

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture

  • Left Quote Icon

    Student Picture