Set B 1

Set B 1 - Richard Madison Haynie PHI 103 Dr Bolton MWF...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Richard Madison Haynie ID 993901015 PHI 103 Dr. Bolton MWF 9:40-10:30AM 01/29/06 Set B-1 In this paper I will put the following argument in standard logical form: If an argument is valid and it has a true conclusion, then it is sound. An argument is sound only if it  has a true conclusion. An argument has a false conclusion if it is invalid. If an argument has a false  conclusion, then it is invalid. If an argument is invalid and has a false conclusion, then it is not sound.  It is not the case that an argument is sound unless it is not. Therefore, if an argument is valid, then it  is valid. First we will choose are dictionary: V=An argument is valid C=An argument has a true conclusion S=An argument is sound Then the standard logical form will be: (V^C) S S C ~V ~C ~C ~V (~V^~C) ~S ~(S ~S) V V We can then create a truth table for each premise and for the conclusion, then decide whether or not the argument is valid. In this special case we can also use the truth table to tell whether or not the argument is sound. The truth table is attached to the end. From the table we can see that the argument is valid. It is valid for three different reasons: 1. The definition of validity is that there is no case where the premises are true and the conclusion false. From the truth table we can see that there is never a case
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 3

Set B 1 - Richard Madison Haynie PHI 103 Dr Bolton MWF...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online