Physics 1 Lab Notes

Physics 1 Lab Notes - PHY 211 Lab Notes Scott Smith Spring...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
PHY 2 11 Lab Notes Scott Smith Spring 2001 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Table of Contents I. The Simple Pendulum: ( ) Tf l = , period as a function of pendulum length (1/24/01). ...... 3 II. The Cantilevered Beam: An Investigative Study (2/1/01). .................................................. 6 III. Linear Motion: UAM or Not (2/7/01). ................................................................................. 9 IV. Projectile Motion (2/13/01). ............................................................................................... 10 V. Projectile Motion: () Rf θ = , range as a function of launch angle (2/21/01). .................. 12 VI. Data Analysis, A Simple Experiment (3/7/01). ................................................................. 13 VII. Determination of Pi (3/14/01). .......................................................................................... 16 VIII. Concerning Springs (3/28/01). ........................................................................................... 21 IX. Predictive Lab (4/4/01). ..................................................................................................... 22 X. Investigative Lab: Coefficient of Static Friction (4/11/01). ............................................... 23 XI. The Not-So-Simple Pendulum (4/17/01). .......................................................................... 25 XII. Notes related to experiments. ............................................................................................. 27 2
Background image of page 2
I. The Simple Pendulum: ( ) Tf l = , period as a function of pendulum length l (cm) T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T avg 90 1.912 1.922 1.921 1.922 1.922 1.922 1.922 1.922 1.922 1.922 1.922 80 1.804 1.804 1.804 1.804 1.804 1.804 1.804 1.804 1.804 1.804 1.804 70 1.704 1.704 1.704 1.704 1.704 1.704 1.704 1.704 1.704 1.704 1.704 60 1.565 1.565 1.565 1.565 1.565 1.565 1.565 1.565 1.565 1.565 1.565 50 1.431 1.431 1.431 1.431 1.431 1.431 1.431 1.432 1.432 1.432 1.431 40 1.283 1.284 1.284 1.284 1.284 1.284 1.284 1.284 1.284 1.284 1.284 30 1.110 1.110 1.110 1.110 1.111 1.111 1.110 1.110 1.110 1.110 1.110 20 0.905 0.906 0.906 0.906 0.906 0.905 0.906 0.906 0.906 0.906 0.906 3
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Question and Discussion 1. The relationship between T and l is exponential. The slope changes over the graph, so this is a sign of an exponential equation. The difference in T values decreases as l increases. 2. is linearly related to () log l ( ) log T , therefore the plot forms a linear graph on log-log paper. The graph gives a slope of ½. 4
Background image of page 4
3. () 0.474 0.219 p Ta l Tl = = 4. Yes, the function corresponds except for some experimental error. This error could be due to the “crude” measurement techniques for the length of the string. The time measurements could have been measured out to the hundred-thousandths place which would make the measurements more accurate. 5
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
II. The Cantilevered Beam: An Investigative Study Fixed load = 550 1 g ± L (cm) reading (cm) m (cm) reading (cm) m (cm) initial reading ±0.05 (cm) Avg. m (cm) 25 13.05 0.30 13.05 0.30 12.75 0.30 30 13.30 0.45 13.30 0.45 12.85 0.45 35 13.55 0.70 13.55 0.70 12.85 0.70 40 13.85 1.00 13.85 1.00 12.85 1.00 45 14.20 1.35 14.20 1.35 12.85 1.35 50 14.70 1.90 14.70 1.90 12.80 1.90 55 15.25 2.50 15.25 2.50 12.75 2.50 60 15.85 3.05 15.85 3.05 12.80 3.05 65 16.80 3.85 16.80 3.85 12.95 3.85 70 18.00 4.95 18.00 4.95 13.05 4.95 75 19.20 6.10 19.20 6.10 13.10 6.10 80 20.62 7.47 20.68 7.53 13.15 7.50 85 22.20 8.80 22.20 8.80 13.40 8.80 6
Background image of page 6
7
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
The relationship is no linear as seen with the linear graph paper. On log-log paper, the relationship is a line. () ( ) ( ) () 4.17 7 74 . 1 7 log log log 3.75 4.17 0.90 4.95 70 1.00 10 1.00 10 p ma p L L cm p cm aa mL ∆= + == =⇒ = × × The relationship of m as a function of L is best represented by . . 1 7 1.00 10 × 8
Background image of page 8
III. Linear Motion: UAM or Not Inclined Plane Air track is at 4° to the horizontal Run x (cm) t 1 (s) t 2 (s) t 3 (s) t 4 (s) t avg (s) ( ) cm s avg x t 1 30 0.805 0.807 0.804 0.803 0.805 37.267 2 40 0.976 (omit) 1.012 1.017 1.016 1.015 39.409 3 50 1.144 1.151 1.150 1.156 1.150 43.478 4 60 1.276 1.286 1.281 1.273 1.279 46.912 5 70 1.389 1.397 1.384 1.389 1.390 50.360 6 80 1.489 1.498 1.512 1.492 1.498 53.405 7 90 1.582 1.583 1.585 1.581 1.583 56.854 8 100 1.668 1.665 1.567 1.651 1.659 60.277 Free Fall Run x (cm) t 1 (s) t 2 (s) t 3 (s) t 4 (s) t avg (s) ( ) cm s avg x t 1 100 0.451 0.450 0.451 0.451 0.451 221.729 2 90 0.428 0.428 0.429 0.429 0.429 209.790 3 80 0.404 0.404 0.405 0.405 0.405 197.530 4 70 0.378 0.385 0.377 0.378 0.380 184.211 5 60 0.349 0.363 0.350 0.351 0.353 169.272 6 50 0.319 0.319 0.319 0.321 0.320 156.250 7 40 0.287 0.286 0.285 0.285 0.286 139.860 8 30 0.247 0.247 0.248 0.148 0.248 121.457 Questions: 1. The free fall motion conforms better to a straight line, which leads me to say that it is uniform acceleration.
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 05/04/2008 for the course PHY 211 taught by Professor Tracy during the Spring '01 term at Anne Arundel CC.