{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Physics 1 Lab Notes - PHY 211 Lab Notes Scott Smith Spring...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
PHY 2 11 Lab Notes Scott Smith Spring 2001 1
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Table of Contents I. The Simple Pendulum: ( ) T f l = , period as a function of pendulum length (1/24/01) ....... 3 II. The Cantilevered Beam: An Investigative Study (2/1/01) ................................................... 6 III. Linear Motion: UAM or Not (2/7/01) .................................................................................. 9 IV. Projectile Motion (2/13/01) ................................................................................................ 10 V. Projectile Motion: ( ) R f θ = , range as a function of launch angle (2/21/01) ................... 12 VI. Data Analysis, A Simple Experiment (3/7/01) .................................................................. 13 VII. Determination of Pi (3/14/01) ........................................................................................... 16 VIII. Concerning Springs (3/28/01) ............................................................................................ 21 IX. Predictive Lab (4/4/01) ...................................................................................................... 22 X. Investigative Lab: Coefficient of Static Friction (4/11/01) ................................................ 23 XI. The Not-So-Simple Pendulum (4/17/01) ........................................................................... 25 XII. Notes related to experiments .............................................................................................. 27 2
Background image of page 2
I. The Simple Pendulum: ( ) T f l = , period as a function of pendulum length l (cm) T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10 T avg 90 1.912 1.922 1.921 1.922 1.922 1.922 1.922 1.922 1.922 1.922 1.922 80 1.804 1.804 1.804 1.804 1.804 1.804 1.804 1.804 1.804 1.804 1.804 70 1.704 1.704 1.704 1.704 1.704 1.704 1.704 1.704 1.704 1.704 1.704 60 1.565 1.565 1.565 1.565 1.565 1.565 1.565 1.565 1.565 1.565 1.565 50 1.431 1.431 1.431 1.431 1.431 1.431 1.431 1.432 1.432 1.432 1.431 40 1.283 1.284 1.284 1.284 1.284 1.284 1.284 1.284 1.284 1.284 1.284 30 1.110 1.110 1.110 1.110 1.111 1.111 1.110 1.110 1.110 1.110 1.110 20 0.905 0.906 0.906 0.906 0.906 0.905 0.906 0.906 0.906 0.906 0.906 3
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Question and Discussion 1. The relationship between T and l is exponential. The slope changes over the graph, so this is a sign of an exponential equation. The difference in T values decreases as l increases. 2. is linearly related to ( ) log l ( ) log T , therefore the plot forms a linear graph on log-log paper. The graph gives a slope of ½. 4
Background image of page 4
3. ( ) 0.474 0.219 p T al T l = = 4. Yes, the function corresponds except for some experimental error. This error could be due to the “crude” measurement techniques for the length of the string. The time measurements could have been measured out to the hundred-thousandths place which would make the measurements more accurate. 5
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
II. The Cantilevered Beam: An Investigative Study Fixed load = 550 1 g ± L (cm) reading (cm) m (cm) reading (cm) m (cm) initial reading ±0.05 (cm) Avg. m (cm) 25 13.05 0.30 13.05 0.30 12.75 0.30 30 13.30 0.45 13.30 0.45 12.85 0.45 35 13.55 0.70 13.55 0.70 12.85 0.70 40 13.85 1.00 13.85 1.00 12.85 1.00 45 14.20 1.35 14.20 1.35 12.85 1.35 50 14.70 1.90 14.70 1.90 12.80 1.90 55 15.25 2.50 15.25 2.50 12.75 2.50 60 15.85 3.05 15.85 3.05 12.80 3.05 65 16.80 3.85 16.80 3.85 12.95 3.85 70 18.00 4.95 18.00 4.95 13.05 4.95 75 19.20 6.10 19.20 6.10 13.10 6.10 80 20.62 7.47 20.68 7.53 13.15 7.50 85 22.20 8.80 22.20 8.80 13.40 8.80 6
Background image of page 6
7
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
The relationship is no linear as seen with the linear graph paper. On log-log paper, the relationship is a line. ( ) ( ) ( ) ( ) 4.17 7 7 4.17 log log log 3.75 4.17 0.90 4.95 70 1.00 10 1.00 10 p m a p L m aL cm p cm a a m L = + = = = = = × = × The relationship of m as a function of L is best represented by . 7 4.17 1.00 10 m L = × 8
Background image of page 8